Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2022: 1.737
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Qian, Jin | Han, Xing | Yu, Ying | Liu, Caihui
Article Type: Research Article
Abstract: Fuzzy rough sets and multi-granularity rough sets are essential extensions of Pawlak rough sets, which have become artificial intelligence research hotspots. Previous studies of the rough sets based on the fuzzy T-equivalence relation did not take the multi-granularity into account. The multi-granularity data is typically the multi-view cognition obtained by different granularity of the data, and its distinctive feature is that the data can be presented in different granularity spaces. In this paper, we integrate the idea of multi-granularity and propose four new models of “optimistic,” “pessimistic,” “optimistic-pessimistic,” and “pessimistic-optimistic” decision-theoretic rough sets based on the fuzzy T-equivalence relation for …the first time, followed by a preliminary analysis of the intrinsic relations and properties of these new decision-theoretic rough set models by a concrete example. At last, we use experiments to show the effectiveness of suggested models, proving that they are both rational and practical. Show more
Keywords: Three-way decision, fuzzy similarity relationship, multi-granularity, decision-theoretic rough set, rough set
DOI: 10.3233/IFS-222910
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2022
Authors: Li, Jingyi | Chao, Shiwei
Article Type: Research Article
Abstract: Most existing classifiers are better at identifying majority classes instead of ignoring minority classes, which leads to classifier degradation. Therefore, it is a challenge for binary classification to imbalanced data, to address this, this paper proposes a novel twin-support vector machine method. The thought is that majority classes and minority classes are found by two support vector machines, respectively. The new kernel is derived to promote the learning ability of the two support vector machines. Results show that the proposed method wins over competing methods in classification performance and the ability to find minority classes. Those classifiers based-twin architectures have …more advantages than those classifiers based-single architecture in classification ability. We demonstrate that the complexity of imbalanced data distribution has negative effects on classification results, whereas, the advanced classification results and the desired boundaries can be gained by optimizing the kernel. Show more
Keywords: Binary classification, imbalanced data, support vector machine
DOI: 10.3233/JIFS-222501
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2022
Authors: Sahaya Elsi, S. | Michael Raj, F. | Prince Mary, S.
Article Type: Research Article
Abstract: Grey wolf-optimized artificial neural networks used in DC–AC hybrid distribution networks, to regulate the energy consumption, is presented in this study. Energy management system that takes into consideration, the distributed generation, load demand, and battery state of charge are being considered. The artificial neural network have been trained, utilising the profile data, based on the energy storage system’s charging and discharging characteristics, under various distribution network power conditions. Moreover, the error rate was kept, well under 10%. The suggested energy management system, that employs an artificial neural network, has been trained to function in the optimal mode, utilising grey wolf …optimization for each grid-connected power converter. Small-scale hybrid DC/AC microgrids have been developed and tested, in order to simulate and verify the proposed energy management system. The grey wolf optimized neural network energy management system has been proven to provide 99.48 % efficiency, which is superior when compared to other methods existing in the literatures. Show more
DOI: 10.3233/JIFS-222112
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2022
Authors: Lekkoksung, Somsak | Iampan, Aiyared | Julatha, Pongpun | Lekkoksung, Nareupanat
Article Type: Research Article
Abstract: It is known that any ordered semigroup embeds into the structure consisting of the set of all fuzzy sets together with an associative binary operation and a partial order with compatibility. In this study, we provide two classes of ordered semigroups in which any model in these classes is a representation of any ordered semigroup. Moreover, we give an interconnection of a class we constructed.
Keywords: ordered semigroup, fuzzy ordered semigroup, representation
DOI: 10.3233/JIFS-223356
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-8, 2022
Authors: Wang, Yaqin | Xu, Jing | Luo, Chen
Article Type: Research Article
Abstract: The mechanical properties of the ultra-great workability concrete (UGWC ) are deeply related to the weights of components, curing period and condition, and occasionally property of admixtures. This study aimed to appraise the usefulness of the adaptive neuro-fuzzy inference system (ANFIS) technique for forecasting the compressive strength of UGWC and enhancing the accuracy of the literature. To outline the forecasting process, two improved ANFIS were suggested, in which determinative variables of them were determined by metaheuristic algorithms named imperialist competitive algorithm (ICA) and multi-verse optimizer (MVO) algorithms. For this purpose, 170 data samples were collected from published literature separated …accidentally for the train and test phase. The calculated performance criteria for proposed ANFIS models demonstrate that both ICA-ANFIS and MVO-ANFIS models can result in justifiable workability for f c of the UGWC prediction procedure. The MVO-ANFIS model could outperform ICA-ANFIS regarding all criteria. For instance, the value of R 2 and VAF for the ICA-ANFIS model are roughly smaller than the MVO-ANFIS model, at 0.9012 and 90% in the training dataset and 0.8973 and 89% in the testing stage, respectively. While the best values of criteria have belonged to the MVO-ANFIS model, with R 2 at 0.937 and 0.944 for the train and test phases, respectively. Overall, the hybrid MVO-ANFIS model can obtain higher workability than ICA-ANFIS and literature (R2 at 0.801), where causes are recognized as the proposed model. Show more
Keywords: Terms— Ultra great workability concrete, compressive strength prediction, adaptive neuro-fuzzy inference system, Hybrid ANFIS
DOI: 10.3233/JIFS-221409
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2022
Authors: Shao, Sijie | Li, Zhiyong
Article Type: Research Article
Abstract: The new power system information network has the security problem of computer virus attack, and the study of its transmission mechanism is helpful to discover the law and influence of virus transmission. In this paper, the research method of epidemic theory is introduced, and a new Susceptible-Exposed-Infectious-Recovered-Susceptible(SEIR-S) virus model is proposed. The immune time-delay parameter is introduced to simulate the evolution and mutation of the virus so that nodes immune to the virus can still be re-infected after a certain time interval. At the same time, the immune time of different nodes is different, and the distributed immune time delay …is used to enhance the authenticity of the simulated virus transmission; and considering the influence of the scale-free characteristics of the information network, this paper establishes a continuous Markov chain based on time. The transmission process of the virus, and then deduce the theoretical analysis results of the virus infection rate threshold. Based on theoretical analysis, the propagation process of the SEIR-S virus model with distributed immune time delay was simulated by using the Monte Carlo method, and the accuracy of the threshold formula of virus infection rate was verified. The influence rule of the hysteresis parameter, that is, increasing the average immune time of nodes to viruses can reduce the infection density of the network in a steady, and at the same time, making the immune time of network nodes obey a normal distribution can effectively reduce the oscillation effect of viruses on the network. Show more
Keywords: New power system, information network, computer virus, SEIR-S model, distributed immune time-delay
DOI: 10.3233/JIFS-220575
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2022
Authors: Jun-Fang, Song | Yan, Chen
Article Type: Research Article
Abstract: In order to alleviate the increasingly serious traffic congestion problem in China, realize intelligent traffic control, and provide accurate and real-time traffic flow prediction data for traffic flow guidance and traffic travel, this paper designs a GPS-based vehicle trajectory fusion optimization deep model BN-LSTM-CNN which makes full use of the temporal and spatial correlation characteristics of dynamic traffic flow to improve the accuracy of short-term traffic flow prediction. The parameters of the historical GPS dynamic trajectory of the traffic network link are converted into a two-dimensional matrix image of time and space relationship. First, the spatial features are input to …the CNN network, and the spatial dependence relationship between the links is mined, then the traffic flow time series modeling is performed with a four-layer ConvLSTM network, and the BN normalization layer is added to normalize the activation value of the previous layer on each batch, so that the model can obtain higher training accuracy and quickly complete the prediction of the traffic flow state in a certain period of time in the future. The experimental results show that the prediction model is fast to optimize, the prediction error is the smallest compared with other methods, and it can meet the real-time requirements of urban traffic control. Show more
Keywords: Traffic flow state prediction, vehicle trajectory, GPS, matrix image, CNN, ConvLSTM
DOI: 10.3233/JIFS-212998
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-9, 2022
Authors: Amutha, S.
Article Type: Research Article
Abstract: White blood cell (WBC) leukemia is caused by an excess of leukocytes in the bone marrow, and image-based identification of malignant WBCs is important for its detection. This research describes a new hybrid technique for accurate classification of WBC leukemia. To increase the image quality, the preprocessing is done using Contrast Limited Adaptive Histogram Equalization (CLAHE). The images are then segmented using Hidden Markov Random Fields (HMRF). To extract features from WBC images, Visual Geometry Group Network (VGGNet), a powerful Convolutional Neural Network (CNN) architecture, is used After that, an Efficient Salp Swarm Algorithm (ESSA) is used to optimize the …extracted features. The proposed method is tested on two Acute Lymphoblastic Leukemia Image Databases, yielding good accuracy of 98.1% for dataset 1 and 98.8% for dataset 2. While enhancing accuracy, the ESSA optimization picked just 1K out of 25K features retrieved with VGGNet. The combination of CNN feature extraction with ESSA feature optimization could be effective for a variety of additional image classification tasks. Show more
Keywords: WBC leukemia, VGGNet-CNN, ALLIDB, efficient scalp swarm algorithm
DOI: 10.3233/JIFS-221302
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2022
Authors: Aswini, Arockia | Sivarani, T.S.
Article Type: Research Article
Abstract: Diabetic retinopathy becomes an increasingly popular cause of vision loss in diabetic patients. Deep learning has recently received attention as one of the most popular methods for boosting performance in a range of sectors, including medical image analysis and classification. The proposed system comprises three steps; they are image preprocessing, image segmentation, and classification. In preprocessing, the image will be resized, denoising the image and enhancing the contrast of the image which is used for further processing. The lesion region of diabetic retinopathy fundus image is segmented by using Feature Fusion-based U-Net architecture. A blood vessel of a retinal image …is extracted by using the spatial fuzzy c means clustering (SFCM) algorithm. Finally, the diabetic retinopathy images are classified using a modified capsule network. The convolution and primary capsule layers collect features from fundus images, while the class capsule and softmax layers decide whether the image belongs to a certain class. Using the Messidor dataset, the proposed system’s network efficiency is evaluated in terms of four performance indicators. The modified contrast limited adaptive histogram equalization technique enhanced the Peak Signal to Noise Ratio (PSNR), mean square error, and Structural Similarity Index Measure (SSIM) have average values of 36.18, 6.15, and 0.95, respectively. After enhancing the image, segmentation is performed to segment the vessel and lesion region. The segmentation accuracy is measured for the proposed segmentation algorithm by using two metrics namely intersection over union (IoU) and Dice similarity coefficient. Then modified capsule network is constructed for classifying the stages of diabetic retinopathy. The experimental result shows that the proposed modified capsule network got 98.57% of classification accuracy. Show more
Keywords: Diabetic retinopathy, Messidor dataset, Image preprocessing, segmentation, classification
DOI: 10.3233/JIFS-221112
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-22, 2022
Authors: Suresh, K.S. | Ravichandran, K.S. | Venugopal, S.
Article Type: Research Article
Abstract: Due to the problem’s high level of complexity, the optimization strategies used for the mobile robot path planning problem are quite expensive. The Mobile Robot Path Search based on a Multi-objective Genetic Algorithm (MRPS-MOGA) is suggested as a solution to the complexity. The MRPS-MOGA resolves path planning issues while taking into account a number of different factors, including safety, distance, smoothness, trip duration, and a collision-free path. In order to find the best approach, the suggested MRPS-MOGA takes into account five main objectives. The MOGA is used to pick the best path from a variety of viable options. Paths produced …at random are used to initialise the population with viable paths. By using objective functions for various objectives, the fitness value is assessed for the quantity of potential candidate paths. In order to achieve diversity in the population, another GA operator mutation is carried out at random on the sequence. Once more, the individual fitness criterion is supported in order to derive the best path from the population. With various situations, an experimental research of the suggested MRPS-MOGA is conducted. The outcome shows that the suggested MRPS-MOGA performs better when choosing the best path with the least amount of time complexity. MRPS-MOGA is more effective than the currently used approaches, according to the experimental analysis. Show more
Keywords: Mobile robot path planning, Multiple objectives, meta-heuristic search, Fitness, tournament selection, ring crossover, adaptive bit string mutation
DOI: 10.3233/JIFS-220886
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2022
Authors: Dong, Yuming | Li, Ziyi | Chen, Zhengquan | Xu, Yuewen | Zhang, Yunan
Article Type: Research Article
Abstract: Early diagnosis of breast cancer plays an important role in improving survival rate. Physiological changes of breast tissue can be observed and measured through medical electrical impedance, and the results can be used as a preliminary diagnosis by doctors before treatment. In this paper, quantum genetic algorithm (QGA) and support vector machine (SVM) were combined to classify breast tissues to help clinicians in diagnosis. The algorithm uses QGA to optimize the parameters of SVM and improve the classification performance of SVM. In this experiment, the electrical impedance data measured from breast tissue provided by UCI [58 ] was used as …the data set. Objectively speaking, the data volume of the data set is small and the representativeness is not strong enough. However, the experimental results show that QGA-SVM shows better classification performance, and it is better than SVM. Show more
Keywords: Quantum genetic algorithm, Support Vector Machines, Breast cancer, Medical electrical impedance
DOI: 10.3233/JIFS-212957
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2022
Authors: Tarakci, Fatih | Ozkan, Ilker Ali | Yilmaz, Sema | Tezcan, Dilek
Article Type: Research Article
Abstract: Rheumatoid Arthritis (RA) is a very common autoimmune disease that causes significant morbidity and mortality, and therefore early diagnosis and treatment are important. Early diagnosis of RA and knowing the severity of the disease are very important for the treatment to be applied. The diagnosis of RA usually requires a physical examination, laboratory tests, and a review of the patient’s medical history. In this study, the diagnosis of RA was made with two different methods using a fuzzy expert system (FES) and machine learning (ML) techniques, which were designed and implemented with the help of a specialist in the field, …and the results were compared. For this purpose, blood counts were taken from 286 people, including 91 men and 195 women from various age groups. In the first method, an FES structure that determines the severity of RA disease has been established from blood count using the laboratory test results of CRP, ESR, RF, and ANA. The FES result that determines RA disease severity, the Anti-CCP level that is used to distinguish RA disease, and the patient’s medical history were used to design the Decision Support System (DSS) that diagnoses RA disease. The DSS is web-based and publicly accessible. In the second method, RA disease was diagnosed using kNN, SVM, LR, DT, NB, and MLP algorithms, which are widely used in machine learning. To examine the effect of the patient’s history on RA disease diagnosis, two different models were used in machine learning techniques, one with and one without the patient’s history. The results of the fuzzy-based DSS were also compared with the diagnoses made by the specialist and the diagnoses made according to the 2010 ACR / EULAR RA classification criteria. The performed DSS has achieved a diagnostic success rate of 94.05% on 286 patients. In the study of machine learning techniques, the highest success rate was achieved with the LR model. While the success rate of the model was 91.25 % with only blood count data, the success rate was 97.90% with the addition of the patient’s history. In addition to the high success rate, the results show that the patient’s history is important in diagnosing RA disease. Show more
Keywords: Fuzzy expert system, rheumatoid arthritis, decision support system, machine learning, diagnosis of disease
DOI: 10.3233/JIFS-221582
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2022
Authors: Zhigang, Zhang | Chunmeng, Lu | Bei, Lu
Article Type: Research Article
Abstract: One of the biggest challenges for Internet of Things (IoT) systems is traffic congestion in large networks. For this reason, the bandwidth should be increased in such systems. In addition, the issue of routing is raised in sending packets from the origin to the destination. Therefore, if there are many IoT devices in the network, it will increase the traffic, which makes faultless routing important in these networks. In this paper, a novel routing method based on Routing Protocol for Low-Power (RPL) is presented to minimize the energy consumption of the Internet of Things. Using the backward method based on …the A* method to reduce energy consumption in a large graph, promising nodes are selected. A coordinate node is used to manage packets and transfer them. The selection of the coordinator node helps to receive packets with less energy and less delay from its neighbors, and the head node selects the best coordinator node with the shortest distance and the highest residual energy. The proposed method improves the energy consumption criteria, the delay between nodes, and the network overhead criterion by considering the estimated energy to the destination with the A* method. Show more
Keywords: Routing algorithm, energy consumption, delay, internet of things
DOI: 10.3233/JIFS-222536
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2022
Authors: Jian-min, Qiao | Wo-yuan, Li
Article Type: Research Article
Abstract: The research work on two-sided matching decision problem considering interval triangular fuzzy information is very scarce, and it needs to be further studied. Based on this, this paper proposes a two-sided matching model based on interval triangular fuzzy sets, with the background of the two-sided matching problem in the interval triangular fuzzy set environment. Firstly, the theory of two-sided matching and interval triangular fuzzy sets is given; Secondly, the comprehensive mean value formula is defined, and the interval triangular fuzzy evaluation matrix is transformed into the comprehensive mean value matrix by using the comprehensive mean value formula; Thirdly, a two-sided …matching model is built with the goal of maximizing the satisfaction of each subject; Finally, the feasibility and effectiveness of the proposed method are verified by examples of investment fund institutions and financing enterprises. Show more
Keywords: Interval triangular fuzzy set, Integrated mean, two-sided matching
DOI: 10.3233/JIFS-222108
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2022
Authors: Zhang, Yangjingyu | Cai, Qiang | Wei, Guiwu | Chen, Xudong
Article Type: Research Article
Abstract: Based on the traditional TOPSIS method and 2-tuple linguistic Pythagorean fuzzy numbers (2TLPFNs), this paper builds a novel 2TLPF-TOPSIS method that combines cumulative prospect theory (CPT) to cope with the multiple attribute group decision-making (MAGDM). This new method takes into account the decision-makers’ mind and the uncertainty of decision-making, and is more in line with the real decision-making environment. First, this paper briefly reviews some necessary theories related to PFS, as well as the calculation rules and comparison methods of 2TLPFNs. Then, since there is often subjective randomness when determining the weight, the entropy method is utilized to objectively determine …the weight. After that, give the specific calculation steps of the new method. In order to show the effectiveness of the new method, apply it into a specific numerical example about evaluating airline business operations capability, and compare it with the other four different methods. The ranking results depict that the new method designed is effective and reasonable, and has good application value of MAGDM problems. Show more
Keywords: Multiple attribute group decision making (MAGDM), 2-tuple linguistic Pythagorean fuzzy numbers (2TLPFNs), TOPSIS method, cumulative prospect theory (CPT), airline business operations capability
DOI: 10.3233/JIFS-220776
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2022
Authors: Noor Mohamed, Sheerin Sitara | Srinivasan, Kavitha
Article Type: Research Article
Abstract: Recent technological developments and improvement in the medical domain demands advancement, to address the issue of early disease detection. Also, the current pandemic has resulted in considerable progress of improvement in the medical domain, through online consultation by physicians for different diseases using clinical reports and medical images. A similar process is adopted in developing a Visual Question Answering (VQA) system in the medical field. In this paper, existing medical VQA datasets, appropriate techniques, suitable quantitative metrics, real time challenges and, the implementation of one VQA approach with algorithms and performance evaluation are discussed. The medical VQA datasets collected from …multiple sources are represented in different perspectives (organwise, planewise, modality-type and abnormality-type) for a better understanding and visualization. Then the techniques used in VQA are subsequently grouped and explained, based on evolution, complexity in the dataset and the need for semantics in understanding the questions. In addition, the implementation of a VQA approach using VGGNet and LSTM is carried out for existing and improved datasets, and analyzed with accuracy and BLEU score metrics. The improved datasets, created through dataset reduction and augmentation approaches, resulted in better performance than the existing datasets. Finally, the challenges of the medical VQA domain are examined in terms of datasets, combining techniques, and modifying the parameters of existing performance metrics for future research. Show more
Keywords: Visual question answering, medical VQA, ImageCLEF, VQA-MED dataset, VQA-RAD dataset, VGGNet, LSTM, challenges of VQA
DOI: 10.3233/JIFS-222569
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2022
Authors: Zhang, Xiaolu | Wan, Jun | Luo, Ji
Article Type: Research Article
Abstract: Interval-valued q-rung orthopair fuzzy number (IVq-ROFN) is a popular tool for modeling complex uncertain information and has gained successful applications in the field of comprehensive evaluation. However, most of the existing studies are based on the absolute values of evaluation data but fail to take incentive effects into account. Reasonable and appropriate incentive can guide the evaluated objects to better achieve the decision goals. Therefore, this study develops an incentive mechanism-based interval-valued q-rung orthopair fuzzy dynamic comprehensive evaluation method. Firstly, new interval-valued q-rung orthopair fuzzy measures including deviation measure and correlation coefficient are proposed for managing IVq-ROFNs data. To overcome …the limitations of the existing aggregating operators that are not suitable for scenarios with need of many times of data aggregation, we introduce two new interval-valued q-rung orthopair fuzzy aggregating operators. Furthermore, a new interval-valued orthopair fuzzy CRITIC method is developed to objectively determine the importance of the evaluated criteria. More importantly, the horizontal incentive effects within a single period and the vertical incentive effects during multiple periods under IVq-ROFNs environments are proposed to reward (or punish) the evaluated objects in the evaluation process. The evaluated results are determined based on the full compensatory model and the multiplicative form model. The main advantage of the developed method is that the expectations of decision-makers and the dynamic characteristics during multiple periods are taken fully into account, which can make the evaluation results more reasonable and reliable. Finally, this developed comprehensive evaluation method is applied to evaluate the green development level of Jiangxi province within eleven cities from 2016 to 2020. We observe that the cities x 2 , x 3 , x 4 , x 5 , x 7 , x 8 are rewarded within positive incentive values and the cities x 1 , x 6 , x 9 , x 10 , x 11 are punished within negative incentive values. Especially, the positive incentive value for the city x 3 is the biggest and the negative incentive value for the city x 9 is the biggest. The best city in term of GDL is x 3 . The evaluated results with consideration of incentive effects are in line with the expectation of the decision-maker. Show more
Keywords: Interval-valued q-rung orthopair fuzzy number, Comprehensive evaluation, CRITIC, Incentive effect, Green development level
DOI: 10.3233/JIFS-222505
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2022
Authors: Hu, Danhui | Huang, Zeqi | Yin, Kan | Li, Feng
Article Type: Research Article
Abstract: Considering that the operation of power transmission and transformation equipment is not timely discovered due to the untimely data integration, a multi-dimensional heterogeneous data clustering algorithm for power transmission and transformation equipment based on multimodal deep learning is proposed. The multi-modal deep learning method is used to mine relevant data and measure the similarity between the data, which can improve the accuracy of subsequent multi-bit heterogeneous data clustering of power transmission and transformation equipment. Set up a clustering center and process data clustering to complete multi-dimensional heterogeneous data clustering of power transmission and transformation equipment. The experimental results show that …the method has high clustering accuracy in the clustering of voltage deviation overrun times, voltage harmonic total distortion rate overrun times, and voltage flicker overrun times. Show more
Keywords: Multimodal deep learning, power transmission and transformation equipment, heterogeneous data, clustering, mining, similarity
DOI: 10.3233/JIFS-222924
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-8, 2022
Authors: Chalasani, Rama Devi | Radhika, Y.
Article Type: Research Article
Abstract: ITK inhibitor is used for the treatment of asthma and activity of inhibitor prediction helps to provide better treatment. Few researches were carried out for the analysis and prediction of kinases activity. Existing methods applied for the inhibitor prediction have limitations of imbalance dataset and lower performance. In this research, the Posterior Probabilistic Weighted Average Based Ensemble voting (PPWAE)ensemble method is proposed with various classifier for effective prediction of kinases activity. The PPWAE model selects the most probable class from the classification method for prediction. The co-train model has two advantages: Features are trained together to increases the learning rate …of model and probability is measured for each model to select the efficient classifier. Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), Classification and Regression Tree (CART), and Nave Bayes were among the classifiers employed. The results suggest that the Probabilistic Co-train ensemble technique performs well in kinase activity prediction. In the prediction of ITK inhibitor activity, the suggested ensemble method has a 74.27 percent accuracy, while the conventional SVM method has a 60% accuracy. Show more
Keywords: Decision tree, ITK inhibitor, posterior probabilistic weighted average based ensemble voting, random forest, support vector machine
DOI: 10.3233/JIFS-221412
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2022
Authors: Deng, Yu
Article Type: Research Article
Abstract: The competitiveness evaluation of regional financial centers is frequently looked as the multiple attribute group decision-making (MAGDM) problem. Based on the TODIM method and fuzzy number intuitionistic fuzzy sets (FNIFS), this paper proposes a new FNIF-TODIM method to evaluate the competitiveness of regional financial centers. First, some basic theories related to FNIFS are briefly introduced. In addition, the weights of the attributes are obtained objectively using the CRITIC weighting method. Then, the traditional TODIM method is extended to FNIFS to obtain the final order of alternatives. As a result, all alternatives can be ranked and the best one for the …competitiveness assessment of regional financial centers can be identified. Finally, an example for competitiveness evaluation of regional financial centers and some decision comparative analysis is listed. The results show that the established algorithmic approach is useful. The main works of this work are: (1) the paper constructs the FNIF-TODIM method for the evaluation of the competitiveness of regional financial centers; (2) the established method is illustrated by a case study for competitiveness evaluation of regional financial centers; and (3) some comparisons prove the rationality and advantages. Show more
Keywords: Multiple attribute group decision making (MAGDM), fuzzy number intuitionistic fuzzy sets (FNIFSs), TODIM method, CRITIC method, Competitiveness evaluation
DOI: 10.3233/JIFS-221247
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2022
Authors: Ashok Kumar, L. | Karthika Renuka, D. | Saravana Kumar, S.
Article Type: Research Article
Abstract: Human-wildlife conflicts in the habitats along the forest fringes are a substantial issue. An automated monitoring system that can find animal breaches and deter them from foraging fields is essential to solve this conflict. However, automatically forefending the intruding animals is a challenging task. In this paper, we propose a deep learning model for elephant identification using YOLO lite with knowledge distillation which could be easily deployed in edge devices. We also propose an elephant re-identification system using Siamese network which is helpful in tracking the number of times the elephant tries to forage the field. This re-encounter information about …the same elephant can be used to decide the averting sound for the particular elephant. The proposed system is found to show an accuracy of 89%, which is provides good performance improvement when compared to the state of art models proposed for animal identification. Thus the proposed lite weight knowledge distillation based animal identification model and deep learning based animal re-identification model can be employed in edge devices for real time monitoring and animal deterring to safe guard the farm fields. Show more
Keywords: Neural networks, knowledge distillation, siamese neural network, classification, re-identification, computer vision
DOI: 10.3233/JIFS-222672
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2022
Authors: Zhang, Sumin | Ye, Jun
Article Type: Research Article
Abstract: Group decision-making is that individuals collectively make a choice from a set of alternatives. Then, in complex decision-making problems, the decision-making process is no longer subject to a single individual, but group decision-making. Hence, the decision reliability and credibility of the collective evaluation information become more critical. However, current decision-making methods lack the confidence level and credibility measure of group evaluation information. To ensure the confidence level and credibility measure of small-scale group decision-making problems, the aim of this paper is to propose a Multi-Attribute Group Decision-Making (MAGDM) approach using a hyperbolic sine similarity measure between Confidence Neutrosophic Number Credibility …Sets (CNNCSs) in the circumstance of Fuzzy Credibility Multi-Valued Sets (FCMVSs). To achieve this aim, this paper contains the following works. First, we present FCMVS to represent the mixed information of fuzzy sequences and credibility degree sequences with different and/or identical fuzzy values. Second, according to the normal distribution and confidence level of fuzzy values and credibility degrees in FCMVS, FCMVS is transformed into CNNCS to avoid the operational issue between different fuzzy sequence lengths in FCMVSs and to ensure the confidence neutrosophic numbers/confidence intervals of fuzzy values and credibility degrees. Third, a hyperbolic sine similarity measure of CNNCSs is established in the circumstance of FCMVSs. Fourth, a MAGDM approach is developed based on the weighted hyperbolic sine similarity measure in the circumstance of FCMVSs. Fifth, the proposed MAGDM approach is applied to an actual example of the equipment supplier choice problem to illustrate the efficiency and rationality of the proposed MAGDM approach in a FCMVS circumstance. In general, this study reveals new contributions in the representation, transformation method, and similarity measure of small-scale group assessment information, as well as the proposed MAGDM method subject to the normal distribution and confidence levels in small-scale MAGDM scenarios. Show more
Keywords: Fuzzy credibility multi-valued set, confidence neutrosophic number credibility set, hyperbolic sine similarity measure, group decision making
DOI: 10.3233/JIFS-223065
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2022
Article Type: Research Article
Abstract: A unique approach for assessing the compressive strength (CS ) of high-performance concrete (HPC ) incorporating blast furnace slag (BFS ) and fly ash (FA ) has been created using support vector regression (SVR ) analytics. In order to identify crucial SVR methodology variables that could be adjusted for improved performance, the Henry gas solubility optimization (HGSO ) and Cuckoo search optimization (CSO ) algorithms were both employed in this study. The recommended methods were developed utilizing 1030 experiments and eight inputs, including the CS as the forecasting objective, admixtures, aggregates, and curing age as the main mix …design component. The results were then contrasted with those from related literature. The estimate results suggest that combined HGSO-SVR and CSO-SVR analysis might perform extraordinarily well in estimating. The Root mean square error value for the HGSO - SVR decreased remarkably when compared to the CSO - SVR . As can be seen from the comparisons, the HGSO - SVR that was built beats anything previously published. In conclusion, the suggested HGSO - SVR analysis might be determined as the proposed system for forecasting the CS of HPC improved with FA and BFS . Show more
Keywords: High-performance concrete, Compressive strength, fly ash, blast furnace slag, estimation, SVR, HGSO, COA
DOI: 10.3233/JIFS-222348
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2022
Authors: Chen, Bo | Cai, Qiang | Wei, Guiwu | Mo, Zhiwen
Article Type: Research Article
Abstract: This paper intends to treat the green supplier selection (GSS) problem as a multi-attribute group decision making (MAGDM) problem, adopt the linguistic Z-number that can more flexibly and accurately express the evaluation information, and expand the traditional multi-attribute boundary approximate area comparison (MABAC) method, combine the CRITIC method of standard importance and consider the risk vector to finally determine the optimal solution. More specifically, the linguistic Z-number is used to describe the fuzzy evaluation information of experts on alternatives under attributes, then the expanded CRITIC method is used to obtain the weight of each given attribute, and finally the MABAC …method with added risk vector and expanded is used to obtain the ranking of alternatives and obtain the best solution. Finally, taking green supplier selection as an example, and comparing with other methods, the reliability and effectiveness of the constructed method are verified. The results show that this method can express the evaluation information of experts flexibly and completely, and obtain the ranking results of given schemes through fewer steps, which is reliable and effective. Show more
Keywords: Multi-attribute group decision-making (MAGDM), linguistic Z-number (LZN), CRITIC method, MABAC method, green supplier selection, risk vector
DOI: 10.3233/JIFS-223447
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2022
Authors: Pavithra, S. | Manimaran, A.
Article Type: Research Article
Abstract: Soft graphs are an interesting way to represent specific information. In this paper, a new form of graphs called Z-soft covering based rough graphs using soft adhesion is defined. Some important properties are explored for the newly constructed graphs. The aim of this study is to investigate the uncertainty in Z-soft covering based rough graphs. Uncertainty measures such as information entropy, rough entropy and granularity measures related to Z-soft covering-based rough graphs are discussed. In addition, we develop a novel Multiple Attribute Group Decision-Making (MAGDM) model using Z-soft covering based rough graphs in medical diagnosis to identify the patients at …high risk of chronic kidney disease using the collected data from the UCI Machine Learning Repository. Show more
Keywords: Soft graphs, soft covering rough set, uncertainty measures, decision making
DOI: 10.3233/JIFS-223678
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2022
Authors: Bilal, Ahmad | Munir, Mobeen
Article Type: Research Article
Abstract: The largest absolute eigenvalue of a matrix A associated to the graph G is called the A -Spectral Radius of the graph G , and A -energy of the graph G is defined as the absolute sum of all its eigenvalues. In the present article, we compute Randic energies, Reciprocal Randic energies, Randic spectral radii and Reciprocal Randic radii of s -shadow and s -splitting graph of G . We actually relate these energies and Spectral Radii of new graphs with the energies and Spectral Radii of original graphs.
Keywords: Shadow graph, splitting graph, randic energy, randic spectral radius, reciprocal randic energy, reciprocal randic spectral radius, eigenvalues
DOI: 10.3233/JIFS-221938
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2022
Authors: Karthikeyan, G. | Komarasamy, G. | Daniel Madan Raja, S.
Article Type: Research Article
Abstract: With the vast advancements in the medical domain, earlier prediction of disease plays a substantial role in enhancing healthcare quality and making better decisions during tough times. This research concentrates on modelling and automated disease prediction model to offer an earlier prediction model for heart disease and the risk factors. This work considers a standard UCI machine learning-based benchmark dataset for model validation and extracts the risk factors related to the disease. The outliers and imbalanced datasets are pre-processed using data normalization to enhance the classification performance. Here, feature selection is performed using non-linear Particle Swarm Optimization (NL - PSO ). …Finally, classification is done with the Improved Deep Evolutionary model with Feed Forward Neural Networks (IDEBDFN). The algorithm’s learning nature is used to evaluate the nature of the hidden layers to produce the optimal results. The outcomes demonstrate that the anticipated model provides superior prediction accuracy. The simulation is carried out in a MATLAB environment, and metrics like accuracy, F-measure, precision, recall, and so on are evaluated. The accuracy (without features) of the evolutionary model in the UCI ML dataset is 97.65%, accuracy (with features) is 98.56%, specificity is 95%, specificity is 2% higher than both the datasets, F1-score is 40%, execution time (min) is 0.04 min, and the AUROC is 96.85% which is substantially higher than other datasets. The proposed model works efficiently compared to various prevailing standards and individual approaches. Show more
Keywords: Heart disease prediction, pre-processing, feature selection, classification, evolutionary model, feed-forward neural network
DOI: 10.3233/JIFS-220912
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2022
Authors: Hou, Yongchao | Fei, Jingtai | Xia, Xiaofang | Cui, Jiangtao
Article Type: Research Article
Abstract: As data collection increases, more and more sensitive data is being used to publish query results. This creates a significant risk of privacy disclosure. As a mathematically provable privacy theory, differential privacy (DP) provides a tool to resist background knowledge attacks. Fuzzy differential privacy (FDP) generalizes differential privacy by employing smaller sensitivity and supporting multiple similarity measures. Thus the output error can be reduced under FDP. Existing FDP mechanisms employ sliding window strategy, which perturb the true query value to an interval with this value as the midpoint to maintain similarity of outputs from neighboring datasets. It is still possible …for an attacker to infer some sensitive information based on the difference between the left and right endpoints of the output range. To address this issue, this article present two solutions: fixed interval perturbation and infinite interval perturbation. These strategies perturb the true query values of two neighboring datasets to the same interval and provide fuzzy differential privacy protection for the dataset. We apply the proposed method to the privacy-preserving problem of bipartite graph subgraph counting and verify the effectiveness by experiments. Show more
Keywords: Fuzzy differential privacy, privacy protection, subgraph counting, bicliques
DOI: 10.3233/JIFS-221505
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2022
Authors: Seghir, Zianou Ahmed | Hemam, Mounir | Zeggari, Ahmed | Hachouf, Fella | Djezzar, Meriem
Article Type: Research Article
Abstract: The application of 3D technology is rapidly expanding, and stereoscopic imagery is typically used to display 3D data. However, compression, transmission, and other necessary processes may reduce the quality of these images. Stereo image quality assessment (SIQA) has gained more attention to guarantee that customers have a positive watching experience. In order to provide the highest level of experience, it is necessary to develop a quality evaluation mechanism for stereoscopic content that is both dependable and precise. A full-reference method for SIQA is presented in this paper. Compared to previous measures, this method gives users more freedom to use distorted …pixel metrics and edge similarity. The binocular summation map is calculated by adding the left and right images for a stereo pair. Improved gradient similarity based distorted pixel measure (SGSDM) is used to calculate the quality of binocular summation. The scored 3D LIVE IQA database is used to evaluate the correlation of the proposed metric with the DMOS subjective score given by the database. The proposed method’s efficacy is demonstrated by experimental comparisons. Show more
Keywords: Gradient similarity, quality assessment, test image, distorted pixel measure, SIQA
DOI: 10.3233/JIFS-223375
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2023
Authors: Gao, Feng | Ahmadzade, Hamed | Gao, Rong | Zou, Zezhou
Article Type: Research Article
Abstract: Gini coefficient is a device to characterize dispersion of uncertain variables. In order to measure variation of uncertain variables, the concept of Gini coefficient for uncertain variables is proposed. By invoking inverse uncertainty distribution, we obtain a formula for calculating Gini coefficient for uncertain variables. As an application of Gini coefficient, portfolio selection problems for uncertain returns are solved via mean-Gini models. For better understanding, several examples are provided.
Keywords: Uncertain variables, monte-carlo simulation, inverse uncertainty distribution, portfolio optimization, Gini coefficient
DOI: 10.3233/JIFS-222762
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2023
Authors: Nath, Sudarshan | Das Gupta, Suparna | Saha, Soumyabrata
Article Type: Research Article
Abstract: Skin disease is currently considered to be one of the most common diseases in the globe. Most of the human population has experienced it at some point but not all skin illnesses are as severe as others. There are some diseases that are symptomless or show fewer symptoms. Skin cancer is a potentially fatal outcome of serious skin illnesses that might develop if they are not detected in time. Due to the fact that medical professionals aren’t always quick or reliable enough to make a proper diagnosis. There is a hefty price tag attached to employing sophisticated equipment. Therefore, we …propose a system capable of classifying skin diseases using deep learning approaches, such as CNN architecture and six preset models including MobileNet, VGG19, ResNet, EfficientNet, Inception, and DenseNet. Acne, blisters, cold sores, psoriasis, and vitiligo are some of the most often seen skin conditions, thus we scoured the web resources for relevant photographs of these conditions. We have applied data augmentation methods to extend the size of the dataset and include more image variations. In the validation dataset, we achieved an accuracy rate of approx 99 percent, while in the test dataset; we achieved an accuracy rate of approx 90 percent. Our proposed method would help to diagnose skin diseases in a faster and more cost-effective way. Show more
Keywords: Skin disease, deep learning, CNN, MobileNet, VGG19, ResNet, EfficientNet, Inception, DenseNet, Acne, blisters, cold sore, psoriasis, vitiligo
DOI: 10.3233/JIFS-222773
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2023
Authors: Mariyam, Farhana | Mehfuz, Shabana | Sadiq, Mohd.
Article Type: Research Article
Abstract: Goal oriented software requirements analysis method is used for the analysis of elicited functional goals (FGs) and non-functional goals (NFGs) of a system in which goals are decomposed and refined into sub-goals until requirements from the sub-goals are identified. Based on the critical analysis, we found that most of the attention of goal-oriented methods is on the crisp and fuzzy logic during the analysis of the software goals or requirements. In these methods’ prior information about the type of membership function is required; and the selection of membership function depends on the subjective justification. As a result, it lacks objectivity …and may affect the ranking values of the goals or requirements during the analysis. Therefore, this paper presents a rough attributed goal-oriented software requirements analysis (RAGOSRA) method in which rough preference matrix has been used to capture the opinions of different stakeholders. The result of the RAGOSRA method is compared by considering the following criteria, i.e., goal types, goal links, types of data used in the analysis, stakeholder perceptions and time complexity with some fuzzy based methods. Based on the time complexity analysis, it is found that RAGOSRA method requires only 4 operations for the selection of goals for the dataset having NFGs and FGs of an institute examination system. On the other hand, FAGOSRA method, fuzzy TOPSIS method, and fuzzy AHP method requires 36, 200, and 240 operations respectively. Show more
Keywords: Requirements engineering, goal-oriented requirements engineering, software requirements analysis, multi-criteria decision-making method, rough-set theory, institute examination system
DOI: 10.3233/JIFS-221300
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2023
Authors: Yousif, Majeed A. | Hamasalh, Faraidun K.
Article Type: Research Article
Abstract: In this paper, a novel numerical scheme is developed using a new construct by non-polynomial spline for solving the time fractional Generalize Fisher equation. The proposed models represent bacteria, epidemics, Brownian motion, kinetics of chemicals and fuzzy systems. The basic concept of the new approach is constructing a non-polynomial spline with different non-polynomial trigonometric and exponential functions to solve fractional differential equations. The investigated method is demonstrated theoretically to be unconditionally stable. Furthermore, the truncation error is analyzed to determine the or-der of convergence of the proposed technique. The presented method was tested in some examples and compared graphically with …analytical solutions for showing the applicability and effectiveness of the developed numerical scheme. In addition, the present method is compared by norm error with the cubic B-spline method to validate the efficiency and accuracy of the presented algorithm. The outcome of the study reveals that the developed construct is suitable and reliable for solving nonlinear fractional differential equations. Show more
Keywords: Non-polynomial spline, generalize fisher equation, truncation error, stability analysis
DOI: 10.3233/JIFS-222445
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2023
Authors: Li, Xiaoning | Yu, Qiancheng | Yang, Yufan | Tang, Chen | Wang, Jinyun
Article Type: Research Article
Abstract: This paper proposes an evolutionary ensemble model based on a Genetic Algorithm (GAEEM) to predict the transmission trend of infectious diseases based on ensemble again and prediction again. The model utilizes the strong global optimization capability of GA for tuning the ensemble structure. Compared with the traditional ensemble learning model, GAEEM has three main advantages: 1) It is set to address the problems of information leakage in the traditional Stacking strategy and overfitting in the Blending strategy. 2) It uses a GA to optimize the combination of base learners and determine the sub. 3) The feature dimension of the data …used in this layer is extended based on the optimal base learner combination prediction information data, which can reduce the risk of underfitting and increase prediction accuracy. The experimental results show that the R2 performance of the model in the six cities data set is higher than all the comparison models by 0.18 on average. The MAE and MSE are lower than 42.98 and 42,689.72 on average. The fitting performance is more stable in each data set and shows good generalization, which can predict the epidemic spread trend of each city more accurately. Show more
Keywords: Evolutionary ensemble, genetic algorithm, ensemble strategy, epidemics transmission prediction
DOI: 10.3233/JIFS-222683
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2023
Authors: Zhang, Yu | Liu, Fan | Hu, Yupeng | Li, Xiaoli | Dong, Xiangjun | Cheng, Zhiyong
Article Type: Research Article
Abstract: Cross-domain recommendation aims to alleviate the target domain’s data sparsity problem by leveraging source domain knowledge. Existing GCN-based approaches perform graph convolution operations in each domain separately. However, the direct effect of item feature and topological structure information in the source domain are neglected for user preference modeling in the target domain. In this paper, we propose a novel Dual Attentive Graph Convolutional Network for Cross-Domain Recommendation (DAG4CDR). Specifically, we integrate the source and target domain’s interaction data to construct a unified user-item bipartite graph and then perform GCN propagation on the graph to learn user and item embeddings. Over …the unified graph, the interaction data from both domains can be leveraged to learn user and item embeddings via information propagation. In the embedding aggregation phase, the messages passed from different items of two domains to users are weighted by a designed dual attention mechanism, which considers the contributions of different items from both node- and domain-level. We conducted extensive experiments to validate the effectiveness of our method on several publicly available datasets, and the results demonstrate the superiority of our model on preference modeling for both common and non-common users. Show more
Keywords: Cross-domain recommendation, graph convolutional network, attention mechanism
DOI: 10.3233/JIFS-222411
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2023
Authors: Jain, Manish | Kumar, Sanjay | Park, Choonkil
Article Type: Research Article
Abstract: The question of relaxing the compatible hypothesis of the pair of mappings in fixed point theory has always been remained an open problem. We address such an open problem raised by Choudhury et al. [4 ] and also explicitly settles the issue of monotone and continuity hypotheses of the involved mappings in coupled coincidence point results. Moreover, we state a gap in an example given in [3 ] and repair it. Application to the dynamic programming problem shows the usability of present work. Finally, we also propose an open problem for further investigation.
Keywords: GV-fuzzy metric space, φ-contractions, Hadɘić type t-norm, mixed monotone property, coupled coincidence point 2010 Mathematics Subject Classification. 47H10, 54H25.
DOI: 10.3233/JIFS-222637
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2023
Authors: Guo, Xiaobin | Chen, Ying | Zhuo, Quanxiu
Article Type: Research Article
Abstract: In paper the generalized real eigenvalue and fuzzy eigenvector of a crisp real symmetric matrix with respect to another real symmetric matrix is studied. The original generalized fuzzy eigen problem is extended into a crisp generalized eigen problem of a real symmetric matrix with high orders using the arithmetic operation of LR fuzzy matrix and vector. Two cases are analysed: (a) the unknown eigenvalue λ is a non negative real number; (b) the unknown eigenvalue λ is a negative real number. Two computing models are established and an algorithm for finding the generalized fuzzy eigenvector of a real symmetric matrix …is derived. Moreover, a sufficient condition for the existence of a strong generalized fuzzy eigenvector is given. Some numerical examples are shown to illustrated our proposed method. Show more
Keywords: Fuzzy numbers, fuzzy eigenvectors, matrix computation, fuzzy linear systems
DOI: 10.3233/JIFS-222641
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-9, 2023
Authors: Singh, Varsha | Agrawal, Prakhar | Tiwary, Uma Shanker
Article Type: Research Article
Abstract: Generating natural language description for visual content is a technique for describing the content available in the image(s). It requires knowledge of both the domains of computer vision and natural language processing. For this, various models with different approaches are suggested. One of them is encoder-decoder-based description generation. Existing papers used only objects for descriptions, but the relationship between them is equally essential, requiring context information. Which required techniques like Long Short-Term Memory (LSTM). This paper proposes an encoder-decoder-based methodology to generate human-like textual descriptions. Dense-LSTM is presented for better description as a decoder with a modified VGG19 encoder to …capture information to describe the scene. Standard datasets Flickr8K and Flickr30k are used for testing and training purposes. BLEU (Bilingual Evaluation Understudy) score is used to evaluate the generated text. For the proposed model, a GUI (Graphical User Interface) is developed, which produces the audio description of the output received and provides an interface for searching the related visual content and query-based search. Show more
Keywords: Convolutional neural network (CNN), dense-long short-term memory (Dense-LSTM), bilingual evaluation understudy score (BLEU), textual description generation
DOI: 10.3233/JIFS-222358
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2023
Authors: Hu, Limei
Article Type: Research Article
Abstract: The traditional failure mode and effect analysis (FMEA), as an effective risk analysis technique, has several limitations in the uncertainty modeling and the weights determination of the risk indicators. This paper aims to propose a hybrid risk prioritization method simultaneously considering the characteristics of the reliability associated with the FMEA team members’ evaluation information and their psychological behavior to enhance the performance of the traditional FMEA model. The hybrid risk prioritization method is developed based on the generalized TODIM method and the weighted entropy measure with the linguistic Z-numbers (LZNs). First, the LZNs are adopted to depict the FMEA team …members’ cognition information and the reliability of these information. Second, a weighted entropy measure based on the fuzzy entropy and the LZNs is developed to obtain the risk indicators’ weights. Finally, the generalized TODIM method with the LZNs is constructed to obtain the risk priority orders of failure modes, which can effectively simulate the FMEA team members’ psychological character. The applicability and effectiveness of the proposed risk prioritization method is validated through an illustrative example of an integrated steel plant. The results of sensitivity analysis and comparative analysis indicate that the proposed hybrid risk prioritization method is effective and valid, and can get more accurate and practical risk ranking results to help enterprises formulate accurate risk prevention and control plans. Show more
Keywords: INDEX TERMS: Failure mode and effect analysis, risk prioritization, Linguistic Z-numbers, fuzzy entropy, the generalized TODIM method
DOI: 10.3233/JIFS-223132
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-21, 2023
Authors: Punarselvam, E.
Article Type: Research Article
Abstract: Parkinson’s disease is neurological degenerative disorder cause by deficient dopamine production which in turn harms the motor functionality and speech. With latest IoT advancement in the health care era, we propose intelligent and smart Parkinson’s disease detection system based on voice signal analysis. Addition to PDs detection, we propose remote health monitoring feature that keep on monitoring and diagnosing PD person activity. To perform all tasks efficiently we divide our propose model in three phases: monitoring, diagnosing and analysis. During monitoring phase, PDs person voice signal is monitored and captured via IoT sensor enabled Smartphone device. This voices signal is …further processed for PD detection over MEC server during diagnosing phase. We use Tunable Q factor wavelet transform (TQWT) for extracting feature from voice sample, these extracted feature are reduced FRS methods. For feature reduction PCA and LDA are used. Theses processed feature are then applied to hybrid case-based reasoning neuro-fuzzy (ANFIS) classification system to detect Parkinson’s disease. On the detection of PDs abnormality, the proposed healthcare monitoring system immediately generates notification to the patient simultaneously send detection report to centralized healthcare cloud system. This PDs detection report is further analyzed and stored at cloud server during analysis phase where report is analyzed by professional health expert and send the appropriate treatment and medication to PD infected person or care taker. For experimentation and performance evaluation benchmark baseline UCI dataset of PDs are used. We analyzed our proposed hybrid ANFIS-CBR classifier with existing classifiers over the accuracy, sensitivity and specificity parameter. Based on the result analysis, it is observed that proposed hybrid classifier maximum accuracy, sensitivity, and specificity of 98.23%, 99.1%, and 95.3% in comparison to other classifier. Show more
Keywords: Parkinson’s Disease (PDs), Internet of things (IoT), Tunable Q-factor wavelet transform, Feature reduction and selection (FRS), Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Forward feature selection (FFS), Backward feature selection (BFS), Adaptive Neuro-fuzzy interference System (ANFIS), Case-Based Reasoning (CBR), MEC (Mobile edge computing), Cloud computing
DOI: 10.3233/JIFS-220941
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2023
Authors: Praveen, R. | Pabitha, P.
Article Type: Research Article
Abstract: The Internet of Medical Things (IoMT) is a network of medical devices, hardware infrastructure, and software that allows healthcare information technology to be communicated over the web. The IoMT sensors communicate medical data to server for the quick diagnosis. As, it handles private and confidential information of a user, security is the primary objective. The existing IoT authentication schemes either using two-factor(Username, password) or multi-factor (username, password, biometric) to authenticate a user. Typically the structural characteristics-based biometric trait like Face, Iris, Palm print or finger print is used as a additional factor. There are chances that these biometrics can be …fabricated. Thus, these structural biometrics based authentication schemes are fail to provide privacy, security, authenticity, and integrity. The biodynamic-based bioacoustics signals are gained attention in the era of human-computer interactions to authenticate a user as it is a unique feature to each user. So, we use a frequency domain based bio-acoustics as a biometric input. Thus, this work propose a Secure Lightweight Bioacoustics based User Authentication Scheme using fuzzy embedder for the Internet of Medical Things applications. Also, the IoT sensors tends to join and leave the network dynamically, the proposed scheme adopts chinese remainder technique for generate a group secret key to protect the network from the attacks of former sensor nodes. The proposed scheme’s security is validated using the formal verification tool AVISPA(Automated Validation of Internet Security Protocols and Applications). The system’s performance is measured by comparing the proposed scheme to existing systems in terms of security features, computation and communication costs. It demonstrates that the proposed system outperforms existing systems. Show more
Keywords: e-Healthcare, internet of medical things security, remote patient monitoring, user authentication, bioacoustics, fuzzy embedder
DOI: 10.3233/JIFS-223617
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-20, 2023
Authors: Sun, Quan | Yang, Lichen | Li, Hongsheng | Sun, Guodong
Article Type: Research Article
Abstract: Aluminum electrolytic capacitor (AEC) is one of the most pivotal components that affect the reliability of power electronic systems. The electrolyte evaporation and dielectric degradation are the two main reasons for the parametric degradation of AEC. Remaining useful life (RUL) prediction for AEC is beneficial for obtaining the health state in advance and making reasonable maintenance strategies before the system suffers shutdown malfunction, which can increase the reliability and safety. In this paper, a hybrid machine learning (ML) model with GRU and PSO-SVR is proposed to realize the RUL prediction of AEC. The GRU is used for the recursive multi-step …prediction of AEC to model the times series of AEC, SVR optimized by PSO for hyper-parameters is applied for error compensation caused by recursive GRU. Finally, the proposed model is validated by two kinds of data sets with accelerated degradation experiments. Compared with the other methods, the results show that the proposed scheme can obtain greater prediction performance index of RUL under different prediction time points, which can support the technology of health management for power electronic system. Show more
Keywords: Aluminum electrolytic capacitor, remaining useful life, machine learning, error compensation
DOI: 10.3233/JIFS-220866
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2023
Authors: Chen, Yong | Long, Feiyu | Kuang, Wei | Zhang, Tianbao
Article Type: Research Article
Abstract: Blast-induced ground vibration is highly possible to result in serious losses such as destroyed buildings. The crucial parameter of the mentioned vibration is peak particle velocity (PPV). Many equations have been developed to predict PPV, however, worse performance has been reported by multiple literatures. This paper developed a method for predicting PPV based on Mamdani Fuzzy Inference System. Firstly, Minimum Redundancy Maximum Relevance was employed to identify the blasting design parameters which significantly contribute to the PPV induced by blasting. Secondly, K-means method was applied to determine the value ranges of the selected parameters. The selected parameters and corresponding value …ranges were combined to input into Mamdani Fuzzy Inference System for obtaining predicted PPV. Totally, 280 samples were collected from a blasting site. 260 out of them were used to train the proposed method and 20 were assigned for test. The proposed method was tested in the comparison with empirical equation USBM, multiple linear regression analysis, pure Mamdani Fuzzy Inference System in terms of the difference between predicted PPV and measured PPV, coefficient of correlation, root-mean-square error, and mean absolute error. The results from that showed that the proposed method has the better performance in PPV prediction. Show more
Keywords: Blasting, peak particle velocity, parameter selection, k-means method, Mamdani Fuzzy Inference System
DOI: 10.3233/JIFS-223195
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2023
Authors: Manikandan, N.K. | Kavitha, M.
Article Type: Research Article
Abstract: The e-learning is necessary in this fast internet world, especially during this pandemic situation, to continue education without any interruption and it is used reduce the educational cost significantly when reduces the energy loss. Generally, machine learning and deep learning algorithms are used to identify patterns that facilitate learning and help learners understand concepts easily. Many content recommendation systems are available for assisting learners as e-learning applications by providing the required study materials. Despite the fact that existing recommendation systems struggle to provide precise content to e-learners due to the availability of a massive volume of data on the internet …and other repositories. For this purpose, we propose a new content recommendation system for recommending suitable content to learners according to their interests and learning capabilities. The proposed content recommendation system employs a newly proposed semantic-aware hybrid feature optimizer that incorporates new optimization algorithms such as the Enhanced Personalized Best Cuckoo Search Algorithm (EpBestCSA) and the Enhanced Harris Hawks Optimization Algorithm (EHHOA) for selecting suitable features that aid in improving prediction accuracy, as well as a newly proposed Deep Semantic Structure Model (DSSM) that incorporates Artificial Neural Network (ANN) and Convolutional Neural Network (CNN). According to the experimental results, the proposed model outperforms other recommendation systems in terms of precision, recall, f-measure, and prediction accuracy. The ten-fold cross validation is done to test the performance of the proposed methodology. Show more
Keywords: Semantic analysis, hybrid feature optimizer, Cuckoo search, Harris Hawks Optimization, deep semantic structure, and content recommendation system
DOI: 10.3233/JIFS-213422
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2023
Authors: Prabhu, Akshatha | Shobha Rani, N. | Basavaraju, H.T.
Article Type: Research Article
Abstract: One of the most essential factors in classifying and qualitatively evaluating mangoes for various industrial uses is weight. To meet grading requirements during industrial processing, this paper presents an orientation-independent weight estimation method for the mango cultivar “Alphonso.” In this study, size and geometry are considered as key variables in estimating weight. Based on the visual fruit geometry, generalized hand-crafted local and global features, and conventional features are calculated and subjected to the proposed feature selection methodology for optimal feature identification. The optimal features are employed in regression analysis to estimate the predicted weight. Four regression models –MLR, Linear SVR, …RBF SVR, and polynomial SVR—are used during the experimental trials. A self-collected mango database with two orientations per sample is obtained using a CCD camera. Three different weight estimation techniques are used in the analysis concerning orientation 1, orientation 2, and combining both orientations. The SVR RBF kernel yields a higher correlation between predicted and actual weights, and experiments demonstrate that orientation 1 is symmetric to orientation 2. By exhibiting a correlation coefficient of R2 = 0.99 with SVR-RBF for weight estimation using both orientations as well as individual orientations, it is observed that the correlation between predicted and estimated weights is nearly identical Show more
Keywords: Mass estimation, computer vision, mango processing, Alphonso mangoes, automated weight estimation
DOI: 10.3233/JIFS-223510
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-19, 2023
Authors: Srinivasa Rao, Illapu Sankara | Sivakumar, V.
Article Type: Research Article
Abstract: Since the IPv6 Wireless Personal Area Network (6LoWPAN) can be utilized for information dissemination, this network gains significant attention in recent years. Proxy mobile IPv6 (PMIPv6) is standard for mobility control based on network at entire IP wireless applications. But, group-based body area networks cannot respond effectively. A new improved group flexibility system decrease the number of control messages contain router requests as well as advertising messages when compared to the group-based PMIPv6 protocol, in order to minimize delay and signaling costs. The IEEE 802.15.4 standard for low-power personal area networks (6LoWPAN) complies through IPv6-compliant MAC and physical layers. If …the default parameters, excessive collisions, packet loss, and great latency occur arbitrarily in high traffic by default MAC parameters while using a great number of 6LoWPAN nodes. The implemented Whale optimization algorithm is based on artificial neural network optimization, genetic algorithm or particle swarm optimization to choose and authenticate MAC parameters. This manuscript proposes a novel intelligent method for choosing optimally configured MAC 6LoWPAN layer set parameters. Results of simulations based on the metrics such as Average delay time (ADT), Average signaling cost, Delivery ratio, Energy consumption, Latency, Network Life time (Nlt), Packet Overhead (PO), Packet loss. The performance of the proposed method provides 19.08%, 25.87%, 31.98%, 26.98%, 31.98%, 26.98% and 23.89% lower Latency, 12.67%, 25.98%, 31.98%, 26.98%, 27.98%, 31.97% and 27.85% lower Packet Overhead and 19.78%, 27.96%, 37.98%, 18.09%, 28.97%, 27.98% and 56.04% higher Delivery ratio compared with the existing methods such as 6LoWPAN-NUM-OHCA-FFA, 6LoWPAN-GTCCF-PSO, 6LoWPAN- DODAG-ACO, 6LoWPAN- MAC-GA-PSO, 6LoWPAN-NCG-DTC-NGIPSA and 6LoWPAN-TDMA-GTS-SHJA algorithms respectively. Show more
Keywords: Artificial neural networks, genetic algorithm, low power personal areas network (6LoWPAN), medium access control protocols (MAC Proxy mobile IPv6 (PMIPv6), particle swarm optimization and Whale optimization algorithm (WOA)
DOI: 10.3233/JIFS-222956
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-25, 2023
Authors: Saxena, Arti | Dubey, Y.M. | Kumar, Manish
Article Type: Research Article
Abstract: Models prediction is done for accurately anticipating metal removal rate (MRR), machine power (MP), and estimated tool life (ETL), which are vital in the industrial setup for better precision and higher speed. Cutting speed (CS) and feed rate (FR) were employed as controlling parameters for machining of P8 material on the SBCNC 60. By maintaining one of the two parameters constant at the mid-level, data from drilling experiments are sampled and examined. Application of ANOVA yields that the feed rate is 52.61 percent significant and the cutting speed is 46.49 percent significant for MRR, while cutting speed contributes 57.59 percent …and feed rate contributes 41.77 percent to the machine power, and the same cutting speed contributes 83 percent to ETL’s output. The analysis results that CS at 190 m/min and FR at 0.3 mm/rev are optimal combinations of input control parameters for all output of drilling operations. The development of prediction models is done by fuzzy and its comparison is carried out with classical regression method for the achievement of optimum MRR, MP and ETL. Numerical parameters for establishing the optimum model are calculated for MAPE, RMSE, MAD, and correlation coefficient between experimental values and the values obtained from regression, and fuzzy logic predictions. MAPE, RMSE, MAD, and correlation coefficient calculated 1.27%, 2.43, 1.89, and 0.99 for MRR,0.97%,0.10, 0.09 and 0.997 for MP and 5.12%,1.01,0.67 and 0.99 for ETL respectively. Hence, the proposed fuzzy logic rules effectively predict the MRR, MP, and ETL on P8 material with optimized performance. Show more
Keywords: ANOVA, Correlation coefficient (R), Estimated Tool Life, Fuzzy Logic, Mean Absolute difference (MAD), Mean Absolute Percentage Error (MAPE), Root mean square error (RMSE), Machine Power, Metal Removal Rate
DOI: 10.3233/JIFS-222768
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
Authors: Shen, Dong | Fang, Haoyu | Li, Qiang | Liu, Jiale | Guo, Sheng
Article Type: Research Article
Abstract: Visual Simultaneous Localization and Mapping (SLAM) is one of the key technologies for intelligent mobile robots. However, most of the existing SLAM algorithms have low localization accuracy in dynamic scenes. Therefore, a visual SLAM algorithm combining semantic segmentation and motion consistency detection is proposed. Firstly, the RGB images are segmented by SegNet network, the prior semantic information is established and the feature points of high-dynamic objects are removed; Secondly, motion consistency detection is carried out, the fundamental matrix is calculated by the improved Random Sample Consistency (RANSAC) algorithm, the abnormal feature points are output by the epipolar geometry method, and …the feature points of low-dynamic objects are eliminated by combining the prior semantic information. Thirdly, the static feature points are used for pose estimation. Finally, the proposed algorithm is tested on the TUM dataset, the algorithm in this paper reduces the average RMSE of ORB-SLAM2 by 93.99% in highly dynamic scenes, which show that the algorithm can effectively improve the localization accuracy of the visual SLAM system in dynamic scenes. Show more
Keywords: Simultaneous localization and mapping (SLAM), semantic segmentation, motion consistency detection, dynamic feature points
DOI: 10.3233/JIFS-222778
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2023
Authors: Hu, Wujin | Shao, Yi | Liu, Yefei
Article Type: Research Article
Abstract: With the successful promotion of the new round of basic education curriculum reform, China’s physical education (PE) teaching ideology and PE teaching mode have undergone profound changes, and these changes urgently require schools to establish a PE teaching quality (PETQ) evaluation system that is compatible with them, and urgently resolve the contradiction between theory and practice. The evaluation of teaching quality is not only a value judgment of teachers’ teaching ability and teaching effect, but also a value judgment of students’ learning ability and learning achievement changes. Therefore, it is an important issue of higher education research to construct a …university PE teaching quality evaluation system and actively promote the healthy development of university PE teaching evaluation. The PETQ evaluation is viewed as the multi-attribute decision-making (MADM). In order to take the full use of power average (PA) operator and Heronian mean (HM) operator, in this article, we combine the generalized Heronian mean (GHM) operator and PA with 2-tuple linguistic neutrosophic numbers (2TLNNs) to propose the generalized 2-tuple linguistic neutrosophic power weighted HM (G2TLNPWHM) operator. The G2TLNPWHM could relieve the influence of the awkward data through power weights and it could also consider the relationships between the attributes, and it can give more accurate ranking order then the existing methods. The new MADM method is built on G2TLNPWHM operators. Finally, an example for PETQ evaluation in is used to show the proposed methods. Show more
Keywords: Multi-attribute decision making (MADM), neutrosophic numbers, 2-tuple linguistic neutrosophic numbers set (2TLNSs), G2TLNPWHM operator, PE teaching quality (PETQ)
DOI: 10.3233/JIFS-224539
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
Authors: Wu, Y.
Article Type: Research Article
Abstract: In this paper, we introduce the notion of [φ , p ]-normed spaces, following the concept of ω -norms which was presented by Singh, and study the Aleksandrov problem in [φ , p ]-normed spaces (0 < p ≤ 1). On the other hand, we introduce the concept of Menger [φ , p ]-normed spaces, which includes the Menger φ -normed spaces defined by Golet as a special case, and present the topological properties of Menger [φ , p ]-normed spaces with some results of profile function.
Keywords: [φ, p]-normed spaces, isometry, distance one preserving property, profile function, Menger [φ, p]-normed spaces2010 MSC: 46B04, 46S50
DOI: 10.3233/JIFS-222947
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-8, 2023
Authors: Li, Jianping | Guo, Chengzhou
Article Type: Research Article
Abstract: Granaries should have good airtightness to reduce grain loss in storage. Prediction of granary airtightness at the design stage is beneficial in improving granary design. This paper proposes a method for the prediction interval (PI) of granary airtightness by using small sample data, which can guide designers with granary design. PI that the probability of the true target falling in it is markedly close or larger compared with the confidence level can be the decision basis of the granary design scheme. This study adopts support vector machine as the regression model trained by the airtightness data set of built granaries, …and obtains the probability distribution of regression errors through information diffusion. The probability interval of errors is derived using a search algorithm, and PIs of granary airtightness can be acquired thereafter. Assessment indexes of PIs with confidence levels of 0.8 and 0.9 indicate that the proposed method can achieve confidence level and is superior to the comparative method using artificial neural network and bootstrap for PIs in cases of only a few samples. Thus, an innovative and feasible method is proposed for the computer-aided design of granary airtightness. Show more
Keywords: Support vector machine, information diffusion, prediction interval, granary airtightness
DOI: 10.3233/JIFS-210619
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2023
Authors: Gao, Bin | Zhang, Naiwen
Article Type: Research Article
Abstract: For urban, the quantity and quality of talent is often an important measure of their development potential. Based on the theory of talent and environment comfort degree and the theory of urban comfort degree, this paper constructs the Evaluation Index System of urban talent development environment. This paper selects 7 coastal urban in Shandong province as the research objects, and uses entropy Weight-TOPSIS and cluster analysis to measure the talent development environment. The research results show that: (1) The talent development environment of seven coastal urban presents the phenomenon of “siphoning” and “distinctness” of talents. On the whole, Qingdao, Weifang, …and Yantai have certain advantages in the talent development environment. (2) Qingdao is the leading city, Weifang, Yantai, Weihai and Dongying are follow-up urban, and Binzhou and Rizhao are backward urban. (3) The environment of the eight first-level indicators forms a “magnetic field” for the development of talents. Only by fully releasing the “magnetic field effect” of the talent development environment can urban ensure that talents are “attracted, retained and used well". This paper puts forward some suggestions to optimize the talent de-velopment environment in coastal urban, which will help to stimulate the vitality and creativity of all kinds of talents in coastal urban. Show more
Keywords: Coastal urban, talent development environment, measurement, entropy weight-topsis method
DOI: 10.3233/JIFS-222889
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2023
Authors: Swethaa, S. | Felix, A.
Article Type: Research Article
Abstract: Land, marine and airborne are the three types of military robots used in the war-field. Land robots are the most crucially considered robots. Selecting a military land robot for a specific purpose is one of the challenging problems for a decision-maker to find the most preferred alternative when it involves fuzziness and uncertainty. Intangible factors are used while selecting the appropriate robotic system as it effectively deals with fuzziness. Intuitionistic dense fuzzy set, which is the combination of intuitionistic fuzzy set and dense fuzzy set, is capable of dealing with intangible factors. This study aims to design the integrated model …on intuitionistic dense fuzzy AHP-TOPSIS to choose the most preferable military land robots under various circumstances. Robots for different types of situations, namely bomb disposal, search and rescue, surveillance and reconnaissance and war-fighter are considered. Moreover, the intuitionistic dense fuzzy AHP is utilized to calculate the subjective weights of the criteria and intuitionistic dense fuzzy TOPSIS is used to rank the alternatives. Further, a sensitivity analysis is examined to demonstrate the quality of the outcome and the results are compared with the fuzzy set, intuitionistic fuzzy set, and dense fuzzy set to show the efficiency of the proposed methodology. Show more
Keywords: Robot selection, intuitionistic dense fuzzy set, intuitionistic trapezoidal dense fuzzy AHP, intuitionistic trapezoidal dense fuzzy TOPSIS
DOI: 10.3233/JIFS-223622
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-26, 2023
Authors: Gong, Zengtai | He, Lele
Article Type: Research Article
Abstract: Connectivity parameters play a crucial role in network analysis. The cyclic reachability is an important attribute that determines the connectivity of the network, the strength of the cycles in intuitionistic fuzzy graphs (IFGs) is not unique. This article first introduces several concepts of cycle connectivity of IFGs, and then discusses the related properties. On the basis of the cycle connectivity of IFGs, the concepts of cyclic connectivity index ( CCI ) and average cyclic connectivity index ( ACCI ) are proposed, which can be used to express the reachability of …cycle. Some results of CCI on IFGs are discussed, such as cutvertices, trees, and complete intuitionistic fuzzy graphs. The vertices of IFGs are divided into three categories according to ACCI . Two algorithms are introduced, one to find CCI and ACCI of a given IFGs and the other to identify the nature of vertices. Show more
Keywords: Cycle connectivity, intuitionistic fuzzy graphs, cyclic connectivity index
DOI: 10.3233/JIFS-222332
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2023
Authors: Ashokkumar, M. | Emilyn, J. Jeba
Article Type: Research Article
Abstract: In Wireless Sensor Networks (WSNs), Clustering aids in maximizing the lifetime of the network with sustained energy stability in the sensor nodes during data dissemination. In this clustering process, the sensor nodes are organized into clusters with the potential fitness node designated as Cluster Heads (CHs) for collecting and forwarding the data to the sink. In specific, the energy consumption of sensor nodes during their role as CH is maximized with great impact over the network lifespan. In this paper, a Weight-imposed Elite Hybrid Binary Cuckoo Search (EHBCS)-based Clustering Mechanism is proposed for facilitating potent data transmission with minimized energy …consumption and improved network lifetime. This EHBCS is proposed as a novel energy-sensitive CH selection framework based on the process of hierarchical routing through the inclusion of hybrid optimization algorithm. It selected CH depending on the parameters of Quality of Service (QoS), delay, distance, and energy into account. It integrated the merits of Binary Cuckoo Search and Elite Mechanism for selecting CHs and performing effective processes by preventing sinkhole issues in WSNs. The results of EHBCS confirmed better throughout by 11.32%, minimized energy consumption by 13.84%, and minimized delay by 16.12% with an increasing number of sensor nodes, compared to the baseline CH selection approaches used for exploration. Show more
Keywords: Binary cuckoo search, clustering, cluster head selection, elite solution, crossover, mutation
DOI: 10.3233/JIFS-222137
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2023
Authors: Cheng, Xinghui | Zhao, Weifeng | Zhang, Zhichao | Zhang, Qing
Article Type: Research Article
Abstract: With the development of complexity in complex equipment, the selection of suppliers referred to several groups. How to select the suppliers for the complex equipment under several groups becomes an important topic. To solve the problem, a two-level consensus reaching process is designed to select the suppliers of the complex equipment in uncertain environments. First, considering the fuzzy environment of selection, the cloud model, which could reflect the fuzziness and randomness, is used to present the uncertain preferences of the decision-makers. Then, considering the negotiation and interaction of two groups, the bi-level consensus reaching process is established to present the …master-slave features of complex equipment. Third, to solve the proposed bi-level model, the improved artificial bee colony is proposed, which adopts the gray wolf algorithm’ searching mechanism and levy flying method. The adopted strategies could enhance the searching power of artificial bee colony. Finally, a case study is used to verify the advantages of our study. Show more
Keywords: Decision making, mathematical modelling, fuzzy logic, supply chain management
DOI: 10.3233/JIFS-221903
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2023
Authors: Ge, Liang | Jia, Yixuan | Li, Qinhong | Ye, Xiaofeng
Article Type: Research Article
Abstract: Traffic speed prediction is a crucial task of the intelligent traffic system. However, due to the highly nonlinear temporal patterns and non-static spatial dependence of traffic data, timely and accurate traffic forecasting remains a challenge. The existing methods usually use a static adjacency matrix to model spatial dependence while ignoring the spatial dynamic characteristics of the road network.Meanwhile, the dynamic influence of different time steps on the prediction target is ignored. Thus, we propose a dynamic multi-graph convolution recurrent neural network (DMGCRNN), which models the dynamic correlations of road networks over time based on various information of road network. Dynamic …correlation is an essential factor for accurate traffic prediction, because it reflects the change of the traffic conditions in real-time. In this model, we design a dynamic graph construction method, which utilizes the local temporal and spatial characteristics of each road segment to construct dynamic graphs. Then, a dynamic multi-graph convolution fusion module is proposed, which considers the dynamic characteristics of spatial correlations and global information to model the dynamic trend of spatial dependence. Moreover, by combing the global context information, temporal attention is provided to capture the dynamic temporal dependence among different time steps. The experimental results from two real-world traffic datasets demonstrate that our method outperforms the state-of-the-art baselines. Show more
Keywords: Traffic speed prediction, dynamic graph construction, Spatio-temporal dependence
DOI: 10.3233/JIFS-222857
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2023
Authors: Shi, Xiaolong | Kosari, Saeed | Rashmanlou, Hossein | Broumi, Said | Satham Hussain, S.
Article Type: Research Article
Abstract: The interval-valued quadripartitioned neutrosophic set is represented by the partition of the interval-valued neutrosophic set’s indeterminacy function into contradiction and ignorance parts. This article introduces the properties of interval quadripartitioned single valued neutrosophic graph. The properties like complementary, self-complementary, strong and complete interval-valued quadripartitioned neutrosophic graphs are investigated. The finest illustration of locating a climate conducive to apricot cultivation in Ladakh is provided by the notion that has been offered. The model gives us details on the location that should be chosen for apricot farming. Using the proposed concepts, we highlight potential applications of the usual apricot plant that thrives …in extremely cold climates and is appropriate for higher production. The adopted approach makes a superior fit to consider the problems in application viewpoint. Show more
Keywords: Interval quadripartitioned neutrosophic graph, properties on graphs, complement of interval quadripartitioned neutrosophic graph
DOI: 10.3233/JIFS-222572
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
Authors: Xu, Meiling | Fu, Yongqiang | Tian, Boping
Article Type: Research Article
Abstract: The fraud problem has drastically increased with the rapid growth of online lending. Since loan applications, approvals and disbursements are operated online, deceptive borrowers are prone to conceal or falsify information to maliciously obtain loans, while lenders have difficulty in identifying fraud without direct contacts and lack binding force on customers’ loan performance, which results in the frequent occurrence of fraud events. Therefore, it is significant for financial institutions to apply valuable data and competitive technologies for fraud detection to reduce financial losses from loan scams. This paper combines the advantages of statistical methods and ensemble learning algorithms to design …the grouped trees and weighted ensemble algorithm (GTWE), and establishes fraud prediction models for online loans based on mobile application usage behaviors(App behaviors) by logistic regression, extreme gradient boosting (XGBoost), long short-term memory (LSTM) and the GTWE algorithm, respectively. The experimental results show that the fraud prediction model based on the GTWE algorithm achieves outstanding classification effect and stability with satisfactory interpretability. Meanwhile, the fraud probability of customers detected by the fraud prediction model is as high as 84.19%, which indicates that App behaviors have a considerable impact on predicting fraud in online loan application. Show more
Keywords: Fraud prediction, mobile application usage behaviors, extreme gradient boosting, long short-term memory, grouped trees, weighted ensemble algorithm
DOI: 10.3233/JIFS-222405
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2023
Authors: Li, Runya | Pang, Ling
Article Type: Research Article
Abstract: Remote sensing image technology is of great significance for dynamic management and monitoring of ground buildings. In order to improve the data fusion ability of remote sensing image of ground buildings, a data fusion method of remote sensing image of ground buildings based on multi-level fuzzy evaluation is proposed. This method constructs a remote sensing image acquisition model of ground buildings, and uses image enhancement methods to realize the gray information analysis and image enhancement of the remote sensing image rate of ground buildings. Finally, combining the remote sensing image data fusion method and the fuzzy region reconstruction method, it …reconstructs the pixels of the dynamically changed ground buildings. The simulation results show that the remote sensing image data fusion accuracy of ground buildings is good, and the remote sensing feature extraction accuracy of ground buildings is high. The dynamic real-time monitoring of remote sensing image of ground buildings is realized. Show more
Keywords: Multistage fuzzy evaluation, remote sensing image, data fusion, enhancement, building image
DOI: 10.3233/JIFS-223434
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2023
Authors: Angel, A. Sheeba | Jayaparvathy, R.
Article Type: Research Article
Abstract: Despite the numerous risks that high-rise buildings face, fire accidents happen most frequently. Studying fire accidents in high-rise buildings is crucial because they can result in harm to people’s health, fatalities, property damage, and pollution. The number of accidental fires in buildings is very large since it is difficult to isolate a single cause and all processes and control measures are not appropriately implemented. This paper proposes a fuzzy-bow tie approach to evaluating the risk of fire accidents by taking into account the various fire sources and effects. The fourteen-floor high-rise residential building is used as a case study for …the proposed fuzzy bow tie approach. The fuzzy fault tree approach estimates that there is a 0.0968% risk of a fire accident occurring in that high-rise building, with a possibility for 9 out of 100 accidental fires annually. The fuzzy event tree model predicts that loss of life and loss of property are the most likely consequences of an accidental fire. Accordingly, mitigation strategies can be developed by building officials and fire safety practitioners. Show more
Keywords: Risk assessment, fire alarm and control system, safety, fault tree, sensitivity analysis
DOI: 10.3233/JIFS-223307
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-18, 2023
Authors: Leena Rosalind Mary, G. | Deepa, G.
Article Type: Research Article
Abstract: The first Zagreb index is equal to the sum of the squares of the degrees at each vertex of G. In this study, we create four distinct types of fuzzy transformation graphs and investigate the fundamental characteristics shared by them. Additionally, upper bounds on the first Zagreb index of fuzzy transformation graphs in terms of fuzzy graph G elements have been discovered.
Keywords: Fuzzy graph, fuzzy transformation graph, first Zagreb index
DOI: 10.3233/JIFS-221781
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2023
Authors: Cui, Wanqiu | Wang, Dawei
Article Type: Research Article
Abstract: Image semantic learning techniques are crucial for image understanding and classification. In social networks, image data is widely disseminated thanks to convenient acquisition and intuitive expression characteristics. However, due to the freedom of users to publish information, the image has apparent context dependence and semantic fuzziness, which brings difficulties to image representation learning. Fortunately, social attributes such as hashtags carry rich semantic relations, which can be conducive to understanding the meaning of images. Therefore, this paper proposes a new method named Social Heterogeneous Graph Networks (SHGN) for image semantic learning in social networks. First, a heterogeneous graph is built to …expand image semantic relations by social attributes. Then the consistent semantic space is reconstructed through cross-media feature alignment. Finally, an image semantic extended learning network is designed to capture and integrate the social semantics and visual feature, which obtains a rich semantic representation of images from a social context. The experiments demonstrate that SHGN can achieve efficient image representation, and favorably against many baseline algorithms. Show more
Keywords: Social networks image, representation learning, heterogeneous graph, social semantic aggregation
DOI: 10.3233/JIFS-222981
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2023
Authors: Wei, Pingping | Zhang, Xin
Article Type: Research Article
Abstract: This paper proposes a robust autoencoder with Wasserstein distance metric to extract the linear separability features from the input data. To minimize the difference between the reconstructed feature space and the original feature space, using Wasserstein distance realizes a homeomorphic transformation of the original feature space, i.e., the so-called the reconstruction of feature space. The autoencoder is used for features extraction of linear separability in the reconstructed feature space. Experiment results on real datasets show that the proposed method reaches up 0.9777 and 0.7112 on the low-dimensional and high-dimensional datasets in extracted accuracies, respectively, and also outperforms competitors. Results also …confirm that compared with feature metric-based methods and deep network architectures-based method, the linear separabilities of those features extracted by distance metric-based methods win over them. More importantly, the linear separabilities of those features obtained by evaluating distance similarity of the data are better than those obtained by evaluating feature importance of data. We also demonstrate that the data distribution in the feature space reconstructed by a homeomorphic transformation can be closer to the original data distribution. Show more
Keywords: Autoencoder, distance measure, feature extraction, linear separability
DOI: 10.3233/JIFS-223017
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2023
Authors: Xu, Aoqi | Tian, Man-Wen | Kausar, Nasreen | Mohammadzadeh, Ardashir | Pamucar, Dragan | Ozbilge, Ebru
Article Type: Research Article
Abstract: The financial systems have complicated dynamics and are perturbed by various uncertainties and disturbances. Chaos theory provides a practical approach to analyzing financial systems. The chaotic systems have unpredictable random characteristics that help to analyze the financial systems better. Recently, type-3 (T3) fuzzy logic systems (FLSs) have been developed for high-uncertain systems. T3-FLSs provide a reliable tool to cope with high-noisy environments. In T3-FLSs, the upper/lower bounds of uncertainties are fuzzy values. This property results in a strong tool to model more levels of uncertainties. Control, modeling, and forecasting accuracy in financial systems are so important. Then, better systems with …higher accuracy are required. In this paper, a new T3-FLS based controller is introduced for chaotic financial systems. By solving a Riccati equation, sufficient conditions are concluded for optimality and robustness. T3-FLSs are learned to minimize the error and stabilize the whole system. A new optimal learning rules are extracted for T3-FLSs. Various benchmark chaotic model of financial systems are considered for examining the efficacy of the introduced approach, and the excellent response and superiority of the suggested approach is verified. Also, a comparison with other methods demonstrates the better efficiency of the suggested scheme. Show more
Keywords: Fuzzy logic, financial systems, chaotic systems, optimal fuzzy control
DOI: 10.3233/JIFS-223396
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2023
Authors: Zhou, Jia-Jia | Zhu, Yi-An | Li, Lian | Shi, Xian-Chen
Article Type: Research Article
Abstract: The existing researchers generalize the decision-theoretic rough sets (DTRSs) model from the viewpoint of the cost function, whether the information system is complete, and so on. Few of them consider multiple different strategies to rank the expected losses. Furthermore, under the circumstance of Pythagorean fuzzy, we can’t directly define the partition of the objects set by employing equivalence relation, there is a need for constructing the general binary relation. Aiming at these problems, in present paper, we propose the similarity measure-based three-way decisions (3WD) in Pythagorean fuzzy information systems, both the binary relation and the similarity neighborhood are induced by …similarity measure between objects. Each object has its own losses, different strategies are designed to rank the expected losses. Further, the similarity measure-based DTRSs dealing with crisp concept and the similarity measure-based Pythagorean fuzzy DTRSs dealing with Pythagorean fuzzy concept are developed to establish the three regions of similarity measure-based 3WD. Finally, the proposed models are used to make decisions for classifying the network nodes of flying ad-hoc networks (FANETs) into normal nodes also called safe nodes, suspicious nodes, and malicious nodes also called unsafe nodes under the evaluation of Pythagorean fuzzy information. Show more
Keywords: Pythagorean fuzzy information systems, DTRSs, similarity measure-based 3WD, FANETs
DOI: 10.3233/JIFS-221424
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2023
Authors: Ganapathy, Revathy | Rajendran, Velayutham
Article Type: Research Article
Abstract: In current years, increased number of cyberspace users cause rapid ascends of network traffics. For instance: probability of receiving network traffic ever since software technologies that linked with devices produced massive amounts of data which are unable to accommodate through conventional schemes port based, payload based and machine learning approaches. Simultaneously SDN technology can alleviate problems of conventional method in classifying network traffic as malicious and benign, resources allocation, network monitoring along with enhancement in overall network performance via activist methods. This research work analyzed the net traffic metadata of 1,04,345 samples gathered from RYU-SDN controller, an OpenFlow controller using …mininet emulator with 23 features then performed encrypted metadata categorization into three classes namely TCP, UDP and ICMP attacks through deep CNN with two layers LSTM, CNN-two layers GRU and ConvNet Bidirectional with two layers GRU approaches with hyper parameters tuning appropriate for better network convergence, performance, optimization too. The proposed experimental outcomes reveals that deep based CB-GRU method fulfill traffic classification in SDN environment and accomplished significance enhancement in terms of accuracy 99.97%, and loss rate 0.01. Other evaluation criterias precision, recall, area under curve, were calculated for performance identification in net data traffic classification than conventional methods. Show more
Keywords: Software defined network (SDN), artificial intelligence (AI), ConvNet (CNN), long short term memory (LSTM), stochastic gradient descent (SGD) optimizer
DOI: 10.3233/JIFS-220051
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2023
Authors: Xu, Baohua | Chen, Jiayu | Li, Zhi | Yang, Tao
Article Type: Research Article
Abstract: In recent years, with the continuous occurrence of natural disasters, people have gradually realized the importance of improving emergency response capability, and the weight of time constraints for rational allocation of emergency materials has gradually increased. Therefore, a high-dimensional collaborative allocation method of disaster materials with time window constraints is studied. A high-dimensional collaborative distribution model of disaster materials with time window constraints is constructed by combining four dimensional decision-making indexes: maximizing the satisfaction of material demand, fairness of material distribution and minimizing the total cost of expected emergency response; Build SPEA2 + SDE hybrid algorithm, solve the model and output the …optimal solution set. The simulation results show that this method can have the ability of high-dimensional distribution of disaster materials, obtain the output of the optimal distribution scheme set of disaster materials, and the material satisfaction is more than 0.70. Under the condition of minimum distribution cost, the distribution of disaster materials can be completed. Show more
Keywords: Time window constraint, disaster materials, high dimensional collaborative allocation, multi-objective constraints, decision index
DOI: 10.3233/JIFS-224428
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2023
Authors: Venkatesh Kumar, M. | Lakshmi, C.
Article Type: Research Article
Abstract: Because significantly complex crypto procedures such as holomorphic encryption are robotically applied, despite the fact that consumer gadgets under our software circumstances are not, computational overhead is outrageously high. Simply hiding customers with the aid of nameless communications to act to protect the server and adversaries from linking suggestions made with the aid of the same customer makes the traditional method, which computes with the aid of any server based on the amount of provided services, impossible, and customers with charge features widely publicised with the aid of the server cause additional security concerns, impossible. To overcome the above existing …drawbacks, this research study presents a Privacy Preservation Data Collection and Access Control Using Entropy-Based Conic Curve. To safeguard the identity of clients and their requests, EBCC employs a unique group signature technic and an asymmetric cryptosystem. First, we ought to implement our EBCC method for data acquisition while maintaining privacy. Second, we consider looking at the properties of secure multiparty computation. EBCC employs lightweight techniques in encryption, aggregation, and decryption, resulting in little computation and communication overhead. Security research suggests that the EBCC is safe, can withstand collision attacks, and can conceal consumer distribution, which is required for fair balance checks in credit card payments. Finally, the results are analysed to illustrate the proposed method performance in addition to the more traditional ABC, AHRPA, ECC, and RSA methods. The proposed work should be implemented in JAVA. Show more
Keywords: Entropy-based conic curve, data mining, privacy-preserving, key generation, encryption, decryption
DOI: 10.3233/JIFS-223141
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2023
Authors: Zhang, Ruifan | Wang, Hao | Yang, Gongping
Article Type: Research Article
Abstract: Embedding similarity-based methods obtained good results in unsupervised anomaly detection (AD). This kind of method usually used feature vectors from a model pre-trained by ImageNet to calculate scores by measuring the similarity between test samples and normal samples. Ultimately, anomalous regions are localized based on the scores obtained. However, this strategy may lead to a lack of sufficient adaptability of the extracted features to the detection of anomalous patterns for industrial anomaly detection tasks. To alleviate this problem, we design a novel anomaly detection framework, MFFA, which includes a pseudo sample generation (PSG) block, a local-global feature fusion perception (LGFFP) …block and an anomaly map compensation (AMC) block. The PSG block can make the pre-trained model more suitable for real-world anomaly detection tasks by combining the CutPaste augmentation. The LGFFP block aggregates shallow and deep features on different patches and input them to CaiT (Class-attention in image Transformers) to guide self-attention, effectively interacting local and global information between different patches, and the AMC block can compensate each other for the two anomaly maps generated by the nearest neighbor search and multivariate Gaussian fitting, improving the accuracy of anomaly detection and localization. In experiments, MVTec AD dataset is used to verify the generalization ability of the proposed method in various real-world applications. It achieves over 99.1% AUROCs in detection and 98.4% AUROCs in localization, respectively. Show more
Keywords: Anomaly detection, pseudo sample, feature fusion, transformer, anomaly map compensation
DOI: 10.3233/JIFS-222595
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2023
Authors: Jianfeng, Li | Xin, Chen | Hua, Guo | Guiling, Sun | Yuhua, Xu | Naizhen, Zhang
Article Type: Research Article
Abstract: The long-term maintenance of good condition for equipment is the basis of carrying out combat missions under the high technology and fast pace of modern war. However, the knowledge in the health management field at present has the characteristics of distribution, multi-source, heterogeneity and uncertainty, which seriously affects the efficiency of knowledge sharing and reuse. In order to improve the utilization of health management knowledge, an ontology-based knowledge representation method is proposed to describe knowledge in a unified and standardized way, and the classical ontology is extended to express the uncertain knowledge in the field of health management. In addition, …to improve the maintenance and knowledge updating efficiency, a global ontology model and a hierarchy, time and activity (HTA) ontology model are constructed. This paper takes the guidance subsystem of a missile as an example to illustrate the process of knowledge modeling. The results show this method realizes knowledge sharing in the health management field and can provide decision support for health management of equipment. Show more
Keywords: Knowledge representation, fuzzy ontology, HTA model, knowledge modeling
DOI: 10.3233/JIFS-224151
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-18, 2023
Authors: Simin, Wang | Lulu, Qin | Chunmiao, Ma | Weiguo, Wu
Article Type: Research Article
Abstract: With the rapid development of cloud computing, there are more and more large-scale data centers, which makes the energy management of data centers more complex. In order to achieve better energy-saving effect, it is necessary to solve the problems of concurrent management and interdependence of IT, refrigeration, storage, and network equipment. Reinforcement learning learns by interacting with the environment, which is a good way to realize the independent management of the data center. In this paper, a overall energy consumption method for data center based on deep reinforcement learning is proposed to achieve collaborative energy saving of data center task …scheduling and refrigeration equipment. A new multi-agent architecture is proposed to separate the training process from the execution process, simplify the interaction process during system operation and improve the operation effect. In the deep learning stage, a hybrid deep Q network algorithm is proposed to optimize the joint action value function of the data center and obtain the optimal strategy. Experiments show that compared with other reinforcement learning methods, our method can not only reduce the energy consumption of the data center, but also reduce the frequency of hot spots. Show more
Keywords: Energy consumption, data center, job scheduling, cooling system, deep reinforcement learning, multi-agent system
DOI: 10.3233/JIFS-223769
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2023
Authors: Shi, Zhengqi | Xie, Shurui | Li, Lingqiang
Article Type: Research Article
Abstract: The generalized neighborhood system-based rough set is an important extension of Pawlak’s rough set. The rough sets based on generalized neighborhood systems include two basic models: optimistic and pessimistic rough sets. In this paper, we give a further study on pessimistic rough sets. At first, to regain some properties of Pawlak’s rough sets that are lost in pessimistic rough sets, we introduce the mediate, transitive, positive (negative) alliance conditions for generalized neighborhood systems. At second, some approximation operators generated by special generalized neighborhood systems are characterized, which include serial, reflexive, symmetric, mediate, transitive, and negative alliance generalized neighborhood systems and …their combinations (e.g. reflexive and transitive). At third, we discuss the topologies generated by the upper and lower approximation operators of the pessimistic rough sets. Finally, combining practical examples, we apply pessimistic rough sets to rule extraction of incomplete information systems. Particularly, we prove that different decision rules can be obtained when different neighborhood systems are chosen. This enables decision makers to choose decisions based on personal preferences. Show more
Keywords: Rough set, multi-granulation rough sets, neighborhood system, approximation operator, axiomatic characterizations, information system
DOI: 10.3233/JIFS-222021
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
Authors: Sahoo, Amit Kumar | Mishra, Sudhansu Kumar | Acharya, Deep Shekhar | Sahu, Sitanshu Sekhar | Paul, Sanchita | Gupta, Vikash Kumar
Article Type: Research Article
Abstract: System identification techniques have proved to be the most effective methodologies for the modeling highly non-linear and system. For the purpose of real-time parameter estimation of a Maglev system, a Teaching Learning Based Optimization (TLBO) for updating the weights of Functional Link Artificial Neural Network (FLANN) model is proposed and implemented in this research. Moreover, we proposed a one & two-Degree of Freedom (one-DOF & two-DOF) Fractional Order PID (FOPID) controller, where the parameters are optimized by using the Teaching Learning Based Optimization (TLBO) and the recently proposed Black Widow Optimization (BWO) algorithm. To investigate the robustness of the proposed …controller, a pulse signal disturbance is added at equal intervals of the output of the identified model of the Maglev system. It is found that the suggested two-DOF FOPID controller with TLBO performs better than its counterpart in terms of both in time domain specifications (i.e., maximum overshoot = 1.2648%, settling time = 1.3884 sec and rise time = 0.8685 sec) and in robustness analysis (i.e., system is sufficiently robust, because the infinity norms of the sensitivity and the complementary sensitivity functions of the system are less than two). The TLBO algorithm has performed better for both identification and optimization of controller parameter due to very less number of algorithmic parameter is as compared to other algorithm. Show more
Keywords: System identification, fractional calculus, FOPID, IOPID, MAGLEV system
DOI: 10.3233/JIFS-222238
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2023
Authors: Liu, Chang
Article Type: Research Article
Abstract: The “3 + 2” segmented training between higher vocational colleges and applied undergraduate courses has opened up the rising channel of vocational education from junior college level to undergraduate level, and promoted the organic connection between higher vocational colleges and Universities of Applied Sciences. It is one of the important ways to establish a modern vocational education system. Exploring the monitoring mechanism of talent training quality is an important measure to ensure the achievement of the segmented training goal, and it is a necessary condition to successfully train high-quality skilled applied talents. The talent training quality evaluation of segmented education is viewed …as multiple attribute decision-making (MADM) issue. In this paper, an extended probabilistic simplified neutrosophic number GRA (PSNN-GRA) method is established for talent training quality evaluation of segmented education. The PSNN-GRA method integrated with CRITIC method in probabilistic simplified neutrosophic sets (PSNSs) circumstance is applied to rank the optional alternatives and a numerical example for talent training quality evaluation of segmented education is used to proof the newly proposed method’s practicability along with the comparison with other methods. The results display that the approach is uncomplicated, valid and simple to compute. Show more
Keywords: Multiple attributes decision making (MADM), probabilistic simplified neutrosophic sets (PSNSs), GRA method, talent training quality evaluation
DOI: 10.3233/JIFS-224494
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2023
Authors: Giri, Sourav Kumar | Garai, Totan | Islam, Sahidul
Article Type: Research Article
Abstract: It is challenging for a decision-maker to decide a proper decision in severe situations of multi-aspirated real-life problems.So there is always an ambiguity in the mind of decision maker. Keeping such vagueness in mind, this paper aims to incorporate some situation parameters imprecise in nature. The imprecise parameters are taken in single-valued bipolar neutrosophic environments. Different arithmetic operations on the single-valued bipolar neutrosophic number using the (α , β) cut method are proposed in this paper. Using this we have calculated the possibility mean of single valued bipolar neutrosophic numbers. A multi-item economic production quantity model with one time only …discount is considered here with some parameters in single valued bipolar neutrosophic number as a case study of our proposed work. A possibilistic mean de-fuzzification technique is used here using possibility measures. Finally, numerical illustration and sensitivity analysis is done for different variables to emphasize the excellence of our proposed work. Show more
Keywords: Possibilistic mean, bipolar neutrosophic number, multi-item inventory model, one time only discount
DOI: 10.3233/JIFS-222752
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2023
Authors: Wang, Chu | Zhao, Xuefeng | Wang, Bin | Deng, Chao | Feng, Junlan
Article Type: Research Article
Abstract: Tabular data is a widely used data form in many fields such as product marketing. In some cases, the domain shift between source and target domain of tabular data may occur with the changing of collection conditions such as time. The extant methods on tabular data mainly consist of neural-network-based methods and tree-based methods. They both meet challenges induced by domain shift on tabular data. First, neural-network-based methods are lack of effective mechanism to extract the features of tabular data and the performance may not be higher than tree-based models. Second, tree-based methods are lack of effective feature representations to …model the associations between source domain and target domain. To improve the performance of tree-based methods for domain shift, a novel pseudo-label based domain adaptation method is proposed for the tree-based method called Xgboost. The proposed method consists of pseudo-label generation and selection strategies. The pseudo-label generation strategy can control the effects of pseudo-labels on Xgboost in a more flexible way by setting proper values of pseudo-labels. The pseudo-label selection strategy can select the pseudo-labels with high confidences under a consistency condition based on the outputs of Xgboost. The quality of pseudo-labels for the data in target domain is improved and so does the performance of Xgboost trained by the data in both source domain and target domain. In the experiment, several UCI datasets and 5G terminal datasets are used to show that the proposed methods can effectively improve the performance of Xgboost. Show more
Keywords: Domain adaptation, Pseudo-label, Tabular data, Xgboost
DOI: 10.3233/JIFS-223118
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2023
Authors: Priyadharshini, P. | Pavalarajan, S.
Article Type: Research Article
Abstract: The Internet of Things (IoT) is a system of machines, computing devices, electronic equipment, and different sensors. It forms a network, where the transmission of device-related data can be accomplished. The devices in the IoT are connected to each other through wireless links and form ad-hoc networks. In IoT based applications, the lifetime of the communicating nodes is a greater concern. The network lifetime can be maximized by introducing energy efficient data transmission in the network. Therefore, a traffic and delay-aware energy-efficient routing (TADEER) protocol for IoT-based networks are proposed in this work. The proposed technique assigns delay for transmitting …data based on the criticality level of data and traffic rate at the forwarding nodes. Fixing delays for data transmission helps to avoid unnecessary transmissions. The route selection process is implemented using an optimization algorithm. A Fuzzy logic (FL) based biogeography-based optimization (BBO) algorithm is presented in this work. Thus, the number of data transmission and energy consumption can be reduced. The performance of the proposed method is evaluated by analyzing transmission delay, network lifetime, and energy consumption. By comparing the simulation results to the existing methods TEAR and ETASA, the simulation results are validated. Show more
Keywords: Internet of Things, smart home, energy management, demand response, energy consumption, wireless sensor network
DOI: 10.3233/JIFS-220399
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2023
Authors: Kang, Xinhui | Nagasawa, Shin’ya
Article Type: Research Article
Abstract: The automobile shows try to convey a clear product or service message to the audience in a short period of time. Therefore, the steps of materials, shape, display and other aspects need to be carefully designed to provide an important display platform for the business. However, most exhibitors depend on their subjective preferences to decide the size and planning of the booth, which fails to attract the attention of customers. In this paper, the evaluation grid method (EGM) and support vector regression (SVR) are combined to design the automobile booth, which provides an innovation process for booth planning and improves …the visual appeal of the booth. Firstly, the EGM is used to interview ten highly involved groups, thus obtaining the evaluation grid diagram of the connecting line among the upper emotional needs, the median design items, and the lower specific elements. Secondly, the importance ranking of upper emotional needs is determined by the grey relational analysis. Finally, the SVR is used to establish a mapping model between key emotional needs and lower design elements, thus obtaining the best combination of booth design features preferred by customers. The verification results show that the proposed method can significantly improve the emotional satisfaction of customers and provide clear trade exhibition guidance for exhibitors. Show more
Keywords: Evaluation grid method, support vector regression, grey relational analysis, automobile trade booth design
DOI: 10.3233/JIFS-223364
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2023
Authors: Nishanth, R. | Sulochana, C. Helen | Radhamani, A.S. | Ahilan, A.
Article Type: Research Article
Abstract: Approximate multipliers are a trending digital design that was specially developed for the implementation of low power and high-speed circuits. The main purpose of this design is to trade the necessity of accurate multipliers. In this work, a novel imprecise compressor was designed to develop the Hazy Multipliers for low-error resilient applications. These imprecise compressors are synthesized using a 40 nm CMOS technology. When compared with the previous approximate multiplier design the proposed Hazy Multipliers are can reduce the error up to 96%, 98.9%, 99.5% respectively than the existing methods. Finally, the proposed design is investigated on the image smoothening application …to show the performance metrics of Hazy Multipliers. Show more
Keywords: Approximate multipliers, accurate multipliers, imprecise compressors, image smoothening
DOI: 10.3233/JIFS-220418
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2023
Authors: Glukhikh, Igor | Chernysheva, Tatyana | Glukhikh, Dmitry
Article Type: Research Article
Abstract: The case-based reasoning method has a high potential for solving tasks of intelligence decision-support. To implement it, it is necessary to solve the problem of comparing situations and selecting the one that is most similar to the current situation in the knowledge base. The problem arises in the case of heterogeneous objects and situations with many different types of parameters and their possible uncertainty. In this paper, an approach based on machine (deep) learning is investigated for this task. It is proposed to carry out the process of selecting situations and solutions from the knowledge base in two stages: recognition …of the states of the elements of a complex object and the relationships between them, then the formation of a representation of the situation in the state space and its use for comparing situations using neural networks. An ensemble neural network model based on a multi-layer network is proposed. It successfully simulates the cognitive functions of a human (expert), correctly selects similar situations and ranks them according to the similarity parameter. Proposed neural network models provide the implementation of a hybrid-CBR approach for decision-making on complex objects. Show more
Keywords: Artificial intelligence, decision support systems, case-based reasoning, similarity assessment, neural network models, urban infrastructure
DOI: 10.3233/JIFS-221335
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2023
Authors: Kong, Yue | Sun, Huaijiang | Cui, Qiongjie | Jian, Pan | Li, Yanmeng
Article Type: Research Article
Abstract: Human motion style transfer is a technique that aims to apply a desired style to neutral motions, which is an essential aspect of motion generation and retargeting. With the advancement of deep learning networks, significant progress has been made in this field. However, one of the main challenges is preserving the essential features of the original motions, such as velocities and trace, during the style transfer process. To overcome this challenge, we have proposed a novel method called Residual LSTM Generative Adversarial Networks (Res-LGAN) for motion style transfer. The Res-LGAN models consist of a transfer network and a refinement network, …which work together to generate smooth and natural stylized motions while preserving key features of the original motions. Additionally, we have introduced a reconstruction loss term to ensure the stylized motions closely retain the features of the original motions. Our experiments demonstrate that the proposed Res-LGAN model outperforms existing state-of-the-art models by generating high-quality stylized motions while preserving the original motion features. To the best of our knowledge, Res-LGAN is the leading method for preserving original content features during motion style transferring. Show more
Keywords: GANs, motion style transfer, motion feature preserved
DOI: 10.3233/JIFS-224175
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2023
Authors: Deng, Xue | Geng, Fengting | Fang, Wen | Huang, Cuirong | Liang, Yong
Article Type: Research Article
Abstract: By considering the stock market’s fuzzy uncertainty and investors’ psychological factors, this paper studies the portfolio performance evaluation problems with different risk attitudes (optimistic, pessimistic, and neutral) by the Data Envelopment Analysis (DEA) approach. In this work, the return rates of assets are characterized as trapezoidal fuzzy numbers, whose membership functions with risk attitude parameters are described by exponential expression. Firstly, these characteristics with risk attitude are strictly derived including the possibilistic mean, variance, semi-variance, and semi-absolute deviation based on possibility theory. Secondly, three portfolio models (mean-variance, mean-semi-variance, and mean-semi-absolute-deviation) with different risk attitudes are proposed. Thirdly, we prove the …real frontiers determined by our models are concave functions through mathematical theoretical derivation. In addition, two novel indicators are defined by difference and ratio formulas to characterize the correlation between DEA efficiency and portfolio efficiency. Finally, numerical examples are given to verify the feasibility and effectiveness of our model. No matter what risk attitude an investor holds, the DEA can generate approximate real frontiers. Correlation analysis indicates that our proposed approach outperforms in evaluating portfolios with risk attitudes. At the same time, our model is an improvement of Tsaur’s work (2013) which did not study the different risk measures, and an extension of Chen et al.’s work (2018) which only considered risk-neutral attitude. Show more
Keywords: Portfolio performance evaluation, risk attitude, data envelopment analysis (DEA), possibility theory, real frontier
DOI: 10.3233/JIFS-223543
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-25, 2023
Authors: Kamarudin, Nur Khairani | Firdaus, Ahmad | Zabidi, Azlee | Ernawan, Ferda | Hisham, Syifak Izhar | Ab Razak, Mohd Faizal
Article Type: Research Article
Abstract: Many smart mobile devices, including smartphones, smart televisions, smart watches, and smart vacuums, have been powered by Android devices. Therefore, mobile devices have become the prime target for malware attacks due to their rapid development and utilization. Many security practitioners have adopted different approaches to detect malware. However, its attacks continuously evolve and spread, and the number of attacks is still increasing. Hence, it is important to detect Android malware since it could expose a great threat to the users. However, in machine learning intelligence detection, too many insignificant features will decrease the percentage of the detection’s accuracy. Therefore, there …is a need to discover the significant features in a minimal amount to assist with machine learning detection. Consequently, this study proposes the Pearson correlation coefficient (PMCC), a coefficient that measures the linear relationship between all features. Afterwards, this study adopts the heatmap method to visualize the PMCC value in the color of the heat version. For machine learning classification algorithms, we used a type of fuzzy logic called lattice reasoning. This experiment used real 3799 Android samples with 217 features and achieved the best accuracy rate of detection of more than 98% by using Unordered Fuzzy Rule Induction (FURIA). Show more
Keywords: Fuzzy, feature selection, unordered fuzzy rule induction (FURIA), machine learning, android
DOI: 10.3233/JIFS-222612
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2022
Authors: Guo, Xiaobin | Zhuo, Quanxiu
Article Type: Research Article
Abstract: This paper considers the perturbation analysis of a class of fully fuzzy linear systems in which the coefficient matrix is a positive fuzzy matrix. The original fuzzy linear systems is extended into a brand new and simple crisp matrix equation using an embedding method. By discussing the perturbation of the extended crisp linear equation, the paper completes the perturbation analysis of the original fuzzy linear system. There are three cases of perturbation are analysed and the respective relative error bounds for solutions of fuzzy linear system are derived. Some numerical examples are given to illustrated our obtained results.
Keywords: Fuzzy linear system, fuzzy solutions, matrix norm, perturbation analysis
DOI: 10.3233/JIFS-222392
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2022
Authors: Sandhu, Muhammad Abdullah | Amin, Asjad
Article Type: Research Article
Abstract: During the last decade, dengue fever has emerged as a life-threatening disease. Dengue fever is caused by the bite of the dengue mosquito, and it spreads rapidly especially in the rainy season due to the availability of water carriers inside and outside the living vicinity. In this work, we propose an automated model for dengue larvae detection and tracking using Convolutional Neural Network (CNN) and Kalman filters. Despite substantial literature available on object tracking, no model has been proposed for dengue larvae. We started our work by collecting water areas and dengue larvae datasets as no public datasets were available. …Our water areas dataset has 30 videos of different containers and environments. The dengue larvae dataset has 50 short videos of dengue larvae having different locations, backgrounds, and textures. In the first step, we used CNN to detect water areas, and the detected water area is then processed for the detection and tracking of larvae. Next, we propose a Kalman filter-based workflow for dengue larvae detection and tracking. A Gaussian Mixer Model with background subtraction is applied for foreground and object detection. Then we used Kalman filters to track the moving larvae in the experimental videos. The proposed model shows excellent results considering the small size of larvae and the challenging dataset. Subjective and objective experimental results clearly show the superior performance of the proposed model. The feedback received from the health authorities has been encouraging and the work is expected to facilitate the health department in eliminating the dengue. Show more
Keywords: Dengue larvae, Detection, Tracking, CNN, Kalman Filtering
DOI: 10.3233/JIFS-223660
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
Authors: Geng, Ruijuan | Ji, Ying | Qu, Shaojian | Wang, Zheng
Article Type: Research Article
Abstract: The sudden COVID-19 epidemic has caused consumers to gradually switch to online shopping, the increasing number of online consumer reviews (OCR) on Web 2.0 sites has made it difficult for consumers and merchants to make decisions by analyzing OCR. Much of the current literature on ranking products based on OCR ignores neutral reviews in OCR, evaluates mostly given criteria and ignores consumers’ own purchasing preferences, or ranks based on star ratings alone. This study aims to propose a new decision support framework for the evaluation and selection of alternative products based on OCR. The decision support framework mainly includes three …parts: 1) Data preprocessing: using Python to capture online consumer comments for data cleaning and preprocessing, and extracting key features as evaluation criteria; 2) Sentiment analysis: using Naive Bayes to analyze the sentiment of OCR, and using intuitionistic fuzzy sets to describe the emotion score; 3) Benchmark analysis: a new IFMBWM-DEA model considering the preference of decision makers is proposed to calculate the efficiency score of alternative schemes and rank them according to the efficiency score. Then, the OCR of 15 laptops crawled from JD.com platform is used to prove the usefulness and applicability of the proposed decision support framework in two aspects: on the one hand, the comparison of whether the preference of decision makers is considered, and on the other hand, the comparison with the existing ranking methods. The comparison also proves that the proposed method is more realistic, the recommendations are more scientific and the complexity of the decision is reduced. Show more
Keywords: Intuitionistic fuzzy multiplicative best-worst method (IFMBWM), data envelopment analysis (DEA), online consumer reviews (OCR), product ranking, sentiment analysis
DOI: 10.3233/JIFS-223095
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-20, 2023
Authors: Guo, Zhuen | Lin, Li
Article Type: Research Article
Abstract: Designers refer to existing product cases and innovate products to develop new products. However, when designers screen product cases, there is no user participation, which leads to the lack of user-side knowledge and emotional drive that is very important for design. Therefore, it is necessary to play the role of user emotional knowledge in promoting the whole design process. This paper proposes the concept of the positive perceptual sample, which applies the knowledge emotion integration of designers and users to the screening sample case stage at the beginning of the design process. This study is based on the lack of …user-side knowledge and emotional drive of reference cases and integrates user emotion into the reference case screening process. Then, in the emotion measurement process, users’ cognitive data in the screening process are obtained through the eye-brain fusion cognitive experiment. Finally, the XGBoost algorithm is used to process feature index data to realize the classification and recognition of cognitive data and applied to the positive perceptual classification of products. The results show that the classification accuracy of physiological cognitive data with user emotional representation by the XGBoost algorithm is 90.87% . The results of cognitive data classification are applied to the screening of positive perceptual samples, and the satisfaction rate is 98.35% . The results show that the method proposed in this paper provides a new source of ideas for obtaining positive perceptual samples and can be applied to new product development. Show more
Keywords: Positive perceptual sample, cognitive data, machine learning, Kansei Engineering, eye-brain fusion
DOI: 10.3233/JIFS-222656
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-19, 2023
Authors: Hasan, Mohammad Kamrul | Ali, Md. Yasin | Sultana, Abeda | Mitra, Nirmal Kanti
Article Type: Research Article
Abstract: Picture fuzzy set (PFS), is a newly developed apparatus to treaty with uncertainties in problems where the opinions are yes, no, neutral, and refusal types. Extension principle is one of the key tools for describing uncertainties. It provides a general method for existing classical mathematical concepts to address fuzzy quantities. It has numerous applications in various arena of our real life. However, there are less works on extension principle for picture fuzzy sets. In this article, new extension principles namely minimal extension principle and average extension principle are proposed for picture fuzzy sets. Various properties of the minimal extension principle …and the average extension principle for PFSs are also established. We also prove some properties of Zadeh’s extension principle for PFSs. Finally, arithmetic operations for PFSs based on the average extension principle are developed with numerical illustrations. Show more
Keywords: Picture fuzzy set, Zadeh’s extension principle, minimal extension principle, average extension principle, arithmetic operations
DOI: 10.3233/JIFS-220616
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2023
Authors: Gomathi, S.V. | Jayalakshmi, M.
Article Type: Research Article
Abstract: The assignment problem is one of the core combinatorial optimization problems in the optimization branch, and the theory and applications of fractional programming have made great strides in recent years. Usually, the possible coefficient values of linear fractional programming and real-world problems are frequently only known to the decision in vague or uncertain terms. Hence, it would be more acceptable to interpret the coefficients for as fuzzy numerical information. In this paper, a fuzzy bi-objective fractional assignment (FBOFAP) has been formulated. A problem has been defined. Here, triangular shapes are used to indicate the parameters. The fuzzy problem is turned …into a typical crisp problem through α-cut using a fuzzy number and then the compromise solution is generated by fuzzy programming. Show more
Keywords: Assignment problem, fractional programming problem, hyperbolic membership function, fuzzy numbers, fuzzy programming
DOI: 10.3233/JIFS-223312
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-9, 2023
Authors: Xu, Chenguang | Zhang, Chao | Ma, Mingxi | Zhang, Jun
Article Type: Research Article
Abstract: Blind image deconvolution has attracted growing attention in image processing and computer vision. The total variation (TV) regularization can effectively preserve image edges. However, due to lack of self-adaptability, it does not perform very well on restoring images with complex structures. In this paper, we propose a new blind image deconvolution model using an adaptive weighted TV regularization. This model can better handle local features of image. Numerically, we design an effective alternating direction method of multipliers (ADMM) to solve this non-smooth model. Experimental results illustrate the superiority of the proposed method compared with other related blind deconvolution methods.
Keywords: Blind deconvolution, Total variation regularization, Adaptive weighted matrix, ADMM
DOI: 10.3233/JIFS-223828
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
Authors: Gong, Yu | Liu, Mingzhou | Wang, Xiaoqiao | Liu, Conghu | Hu, Jing
Article Type: Research Article
Abstract: Multi-scale defect features, blurred edges and inability to locate geometric features have been the three key factors limiting the detection of surface defects on quality control system in the industrial manufacturing process. In this study, a method based on the fusion of multi-scale features and pixel-level semantic segmentation is proposed for the detection of surface defects. The proposed method firstly fuses multi-level feature maps to balance the expressiveness of multi-scale features, then adds a boundary refinement module to enhance the accurate inference of edge fine-grained, and finally adopts an en-decoder architecture to locate geometric features at the pixel-level for each …type of defects, realizing intelligent detection of geometric features of end-to-end multi-scale defects on the surface of parts. We conduct experiments using the collected parts datasets to evaluate the effectiveness of our framework. The experimental results show that the proposed model achieves MIoU of 80.1%, the recognition accuracy reaches more than 95 %, and a detection rate of up to 29.64 FPS, demonstrating the advancement and effectiveness of the proposed method with less misclassification and superior generalization performance and has progress and effectiveness in detecting surface defects of multi-scale features. It provides a research idea for the subsequent realization of surface quality inspection in the manufacturing process system. Show more
Keywords: Intelligent manufacturing, quality control, surface defects detection, multi-scale features, semantic segmentation
DOI: 10.3233/JIFS-223041
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-19, 2023
Authors: Zhang, Yang | Zhou, Wentao | Ma, Lina
Article Type: Research Article
Abstract: The success of technological innovation is related to the future and destiny of enterprises, but because of its uncertainty and high risk, the risk of failure of technological innovation exists objectively. This paper uses grounded theory to code the typical cases of technological innovation failure at home and abroad and explores the causes of technological innovation failure. It is found that policies and regulations, institutional environment, and market environment are the important external factors that cause the failure of enterprise technological innovation, while the defects of enterprise technological innovation products, enterprise system, internal management, technological resources, and managers are the …important internal factors that cause the failure of enterprise technological innovation. By constructing the evolution model of enterprise technological innovation failure, it is found that the failure of enterprise technological innovation is the result of the joint action of enterprise management operation mechanism, technology, capital, and other restraint mechanisms, as well as market and policy system guidance mechanism. Show more
Keywords: Failure of technological innovation, influence factors, formation mechanism, grounded theory, multicase
DOI: 10.3233/JIFS-221756
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2023
Authors: Kouser, R. Ruhin | Manikandan, T.
Article Type: Research Article
Abstract: In VCC, at the time of congestion, to deal with traffic, the vehicles’ underutilized resources are shared; subsequently, these resources aren’t constrained to computing power, storage, along with internet connectivity. Nevertheless, owing to the vehicular network characteristics, attaining the QoS requirements search together with the allocation of resources in the Vehicular Cloud (VC) has turned into a complicated task. An intelligent Square Shaped (SS)-Adaptive Neuro-Fuzzy Interference (SS-ANFIS) methodology for Resource Scheduling (RS) in addition to Mean-centered Penguins Search Optimization Algorithm (M-PeSOA) for Optimal Path Selection (OPS) in the VC is proposed here for efficient resource allocation. (a) Feature extraction, (b) …Vehicles clustering, (c) OPS, (d) Resource information extraction, and (e) RS included in the proposed methodology. First, the vehicular network is initialized following that the vehicle features are extracted. Next, Cluster Heads (CHs) are generated regarding which vehicles are clustered; subsequently, the multi-paths are generated. After that, by employing the M-PeSOA, the OPS procedure is conducted; thus, the VC’s resource information is extracted aimed at scheduling the resources efficiently. Lastly, by employing the SS-ANFIS, vehicles are scheduled in the optimal paths. The proposed resource allocation system’s performance is assessed, and the experiential outcomes are analogized using the sumo tool and java platform. Show more
Keywords: Vehicular cloud computing (VCC), cluster formation, resource scheduling, adaptive neuro-fuzzy interference (ANFIS), penguins search optimization algorithm (PeSOA), cluster heads (CHs), cockroach swarm optimization (CSO), multipath creation
DOI: 10.3233/JIFS-223522
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2022
Authors: Li, Ze | Liu, Xiaoze | Ji, Lin | He, Guanglong | Sun, Liang
Article Type: Research Article
Abstract: The diversity of attribute categories brings certain difficulties to data feature detection. In order to improve the accuracy and efficiency of feature detection, a hybrid attribute feature detection method for power system intelligent operation and maintenance big data based on improved random forest algorithm is proposed. Clustering processing power system intelligent operation and maintenance big data, based on data clustering results to reduce the characteristics of data mixed attributes, reduce the scale of data processing, and discretize the data mixed attributes; BP neural network is used to preprocess the results. Make corrections to improve the accuracy of feature detection, use …the improved random forest algorithm to classify the data, and improve the convergence speed of the method. Finally, the support vector machine method is used to realize the feature detection of data mixed attributes. The experimental results show that the feature detection accuracy and efficiency of the method designed in this paper are high, and more features can be detected, which verifies its effectiveness. The method designed in this paper has the minimum RMSE value and the maximum value is only 0.12, which is far lower than the RMSE value of the improved spectral clustering algorithm and multi-domain feature extraction method, and has high detection accuracy. Show more
Keywords: Improved random forest algorithm, power system, operation and maintenance big data, mixed attributes, BP neural network, support vector machine
DOI: 10.3233/JIFS-223852
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2023
Authors: Cui, Chunsheng | Che, Libin | Wei, Meng
Article Type: Research Article
Abstract: The steady development of commercial banks plays a key role in maintaining the healthy development of the economy. The ability to judge financial risks is a reflection of the comprehensive risk management level of a commercial bank, and it is also an important criterion for measuring its competitiveness and operational stability. Based on the analysis of economic development laws and reference to relevant literature, this paper screened out the eight most representative risk evaluation measurement indicators of commercial banks, ranked these indicators in preference according to expert opinions, established a group decision-making model, and then obtained the consensus ranking by …using the least divergence method. The PCbHA method was used to check the consistency of the results, modify the expert opinions, iteratively calculate, and finally construct the importance ranking of commercial bank risk indicators. This paper discusses the construction of an evaluation system based on the perspective of risk management to enrich and improve the risk management content of commercial banks, enhance the risk prevention and control ability, and provide suggestions for the prevention and management of risks in commercial banks. Show more
Keywords: Iteration, group decision-making, PCbHA, commercial bank, risk monitoring
DOI: 10.3233/JIFS-222508
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2023
Authors: Kabilesh, S.K. | Mohanapriya, D. | Suseendhar, P. | Indra, J. | Gunasekar, T. | Senthilvel, N.
Article Type: Research Article
Abstract: Monitoring fruit quality, volume, and development on the plantation are critical to ensuring that the fruits are harvested at the optimal time. Fruits are more susceptible to the disease while they are actively growing. It is possible to safeguard and enhance agricultural productivity by early detection of fruit diseases. A huge farm makes it tough to inspect each tree to learn about its fruit personally. There are several applications for image processing with the Internet of Things (IoT) in various fields. To safeguard the fruit trees from illness and weather conditions, it is difficult for the farmers and their workers …to regularly examine these large areas. With the advent of Precision Farming, a new way of thinking about agriculture has emerged, incorporating cutting-edge technological innovations. One of the modern farmers’ biggest challenges is detecting fruit diseases in their early stages. If infections aren’t identified in time, farmers might see a drop in income. Hence this paper is about an Artificial Intelligence Based Fruit Disease Identification System (AI-FDIS) with a drone system featuring a high-accuracy camera, substantial computing capability, and connectivity for precision farming. As a result, it is possible to monitor large agricultural areas precisely, identify diseased plants, and decide on the chemical to spray and the precise dosage to use. It is connected to a cloud server that receives images and generates information from these images, including crop production projections. The farm base can interface with the system with a user-friendly Human-Robot Interface (HRI). It is possible to handle a vast area of farmland daily using this method. The agricultural drone is used to reduce environmental impact and boost crop productivity. Show more
Keywords: Fruit quality, Internet of Things (IoT), fruit disease, artificial intelligence, drone system
DOI: 10.3233/JIFS-222017
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2023
Authors: Fang, Jian | Lin, Xiaomei | Liu, Weida | An, Yi | Sun, Haoran
Article Type: Research Article
Abstract: The purpose of facial expression recognition is to capture facial expression features from static pictures or videos and to provide the most intuitive information about human emotion changes for artificial intelligence devices to use effectively for human-computer interaction. Among the factors, the excessive loss of locally valid information and the irreversible degradation trend of the information at different expression semantic scales with increasing network depth are the main challenges faced currently. To address such problems, an enhanced pyramidal network model combining with triple attention mechanisms is designed in this paper. Firstly, three attention mechanism modules, i.e. CBAM, SK, and SE, …are embedded into the backbone network model in stages, and the key features are sensed by using spatial or channel information mining, which effectively reduces the effective information loss caused by the network depth. Then, the pyramid network is used as an extension of the backbone network to obtain the semantic information of expression features across scales. The recognition accuracy reaches 96.25% and 73.61% in the CK+ and Fer2013 expression change datasets, respectively. Furthermore, by comparing with other current advanced methods, it is shown that the proposed network architecture combining with the triple attention mechanism and multi-scale cross-information fusion can simultaneously maintain and improve the information mining ability and recognition accuracy of the facial expression recognition model. Show more
Keywords: Facial expression recognition, attention mechanism, Resnet-50, pyramid network
DOI: 10.3233/JIFS-222252
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2023
Authors: Gobinath, C. | Gopinath, M.P.
Article Type: Research Article
Abstract: Recent reports indicate a rise in retinal issues, and automatic artery vein categorization offers data that is particularly instructive for the medical evaluation of serious retinal disorders including glaucoma and diabetic retinopathy. This work presents a competent and precise deep-learning model designed for vessel segmentation in retinal fundus imaging. This article aims to segment the retinal images using an attention-based dense fully convolutional neural network (A-DFCNN) after removing uncertainty. The artery extraction layers encompass vessel-specific convolutional blocks to focus the tiny blood vessels and dense layers with skip connections for feature propagation. Segmentation is associated with artery extraction layers via …individual loss function. Blood vessel maps produced from individual loss functions are authenticated for performance. The proposed technique attains improved outcomes in terms of Accuracy (0.9834), Sensitivity (0.8553), and Specificity (0.9835) from DRIVE, STARE, and CHASE-DB1 datasets. The result demonstrates that the proposed A-DFCNN is capable of segmenting minute vessel bifurcation breakdowns during the training and testing phases. Show more
Keywords: Deep learning, fundus image, fully-convolutional neural networks, blood vessel segmentation, artery vein classification
DOI: 10.3233/JIFS-224229
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2023
Authors: Shukla, Poorva | Patel, Ravindra | Varma, Sunita
Article Type: Research Article
Abstract: Recently, Vehicular Ad-hoc Network (VANET) has been one of the emerging fields of research. Many researchers are doing their research on various challenges of VANET. Congestion or blockage has become a critical issue in intelligent transportation systems, and this problem may arise daily due to the usage of smart technology in VANET. So we need some mechanism which controlscongestion. This paper present the trustworthy, long-lasting and consistent block chain congestion control mechanism using the heterogeneity of Dullening Nural Network (DNN), Q-Learning, and Software Define Network (SDN) model for an accurate result, fixed infrastructure, together with a correct prediction of congestion …when it occurs at the edge of the network and give the fast and correct decision of congestion w.r.t VANET trust, Quality of service (QOS) and other vehicles current request. The focus of our research is on distributed SDN Technology and block chain technology for the development of smart cities and linked vehicles. So we proposed an inexpensive mechanism with low latency and a low bandwidth block chain system. Based on the Simulation result, our proposed architecture gives 82% and 98% reliability and efficiency gain in a congestion environment compared to traditional approaches. This paper aims to increase throughput, Packet Delivery Ratio (PDR), energy consumption time, and less end-to-end delay and routing overhead during communication. Show more
Keywords: Edge computing, blockchain system, DNN, Q-learning, SDN
DOI: 10.3233/JIFS-223073
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-24, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl