Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zavala-Díaz, Jonathan | Olivares-Rojas, Juan C.; * | Gutiérrez-Gnecchi, José A. | Téllez-Anguiano, Adriana C. | Alcaraz-Chávez, J. Eduardo | Reyes-Archundia, Enrique
Affiliations: División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I. T. de Morelia, Morelia, Michoacán, México
Correspondence: [*] Corresponding author. Juan C. Olivares-Rojas, División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I. T. de Morelia, Av. Tecnológico N° 1500, Col. Lomas de Santiaguito, Morelia, Michoacán, México. E-mail: juan.or@morelia.tecnm.mx
Abstract: Efficient medical information management is essential in today’s healthcare, significantly to automate diagnoses of chronic diseases. This study focuses on the automated identification of diabetic patients through a clinical note classification system. This innovative approach combines rules, information extraction, and machine learning algorithms to promise greater accuracy and adaptability. Initially, the four algorithms evaluated showed similar performance, with Gradient Boosting standing out with an accuracy of 0.999. They were tested on our clinical and oncology notes, where SVM excelled in correctly labeling non-oncology notes with a 0.99. Gradient Boosting had the best average with 0.966. The combination of rules, information extraction, and Random Forest provided the best average performance, significantly improving the classification of clinical notes and reducing the margin of error in identifying diabetic patients. The principal contribution of this research lies in the pioneering integration of rule-based methods, information extraction techniques, and machine learning algorithms for enhanced accuracy in diabetic patient identification. For future work, we consider implementing these algorithms in natural clinical settings to evaluate their practical performance. Additionally, additional approaches will be explored to improve the accuracy and applicability of clinical note-grading systems in healthcare.
Keywords: NLP, diabetes, machine learning, binary classification, word frequency analysis
DOI: 10.3233/JIFS-219375
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl