Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Hengyoua; * | Ke, Rongjia | Jiang, Xiangb
Affiliations: [a] School of Science, Beijing University of Civil Engineering and Architecture, Beijing, China | [b] School of Computer Science and Technology, Jiangsu Normal University, Xuzhou, China
Correspondence: [*] Corresponding author. Hengyou Wang, School of Science, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China. E-mail: wanghengyou@bucea.edu.cn.
Abstract: Due to its remarkable performance, the convolutional neural network (CNN) has gained widespread usage in image inpainting challenges. However, most of these CNN-based methods reconstruct images only in the spatial domain, which produces satisfactory outcomes for small-region inpainting tasks, but blurs the details and generates incomplete structures for large-region inpainting tasks with complex backgrounds. In this paper, we address the issue of large-region inpainting tasks by our novel Adaptive Fourier Neural Network. Specifically, in our network, a Fourier-based global receptive field module is introduced to incorporate frequency information and expand the receptive field by transforming local convolutions into global convolutions, enabling the proposed network to transmit global information to the missing region. Furthermore, to better fuse spatial and frequency features, an attention-based joint space-frequency module is proposed to combine spatial and frequency information. Finally, to validate the effectiveness and robustness of our proposed method, we conduct qualitative and quantitative experiments on two popular datasets Paris StreetView and Places. The experimental results demonstrate that our proposed method outperforms state-of-the-art methods by generating sharper, more coherent, and visually plausible inpainting results. Code will be released after this work published: https://github.com/langka9/AFNN.git.
Keywords: Large-region image inpainting, Fourier-based global receptive field, frequency domain, Fourier Neural Network
DOI: 10.3233/JIFS-239513
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl