Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ling, Linaa; * | Wen, Mia | Wang, Haizhoub | Zhu, Zhouc | Meng, Xiangjied
Affiliations: [a] College of Computer Science and Technology, Shanghai University of Electric Power, China | [b] The Pennsylvania State University, University Park | [c] Guizhou Power Grid Bijie Power Supply Bureau, China | [d] China Information Technology Security Evaluation Center, China
Correspondence: [*] Corresponding author. Lina Ling, College of Computer Science and Technology, Shanghai University of Electric Power, China. E-mail: lingln@mail.shiep.edu.cn.
Abstract: The detection of out-of-distribution (OoD) samples in semantic segmentation is crucial for autonomous driving, as deep learning models are typically trained under the assumption of a closed environment, whereas the real world presents an open and diverse set of scenarios. Existing methods employ uncertainty estimation, image reconstruction, and other techniques for OoD sample detection. We have observed that different classes may exhibit connections and associations in varying contexts. For example, objects encountered by autonomous vehicles differ in rural road scenes compared to urban environments, and the likelihood of encountering novel objects varies. This aspect is missing in current anomaly detection methods and is vital for OoD sample detection. Existing approaches solely consider the relative significance of each prediction class, overlooking the inter-object correlation. Although prediction scores (e.g., max logits) obtained from the segmentation network are applicable for OoD sample detection, the same problem persists, particularly for OoD objects. To address this issue, we propose the utilization of the Mahalanobis distance of max logits to evaluate the final predicted score. By calculating the Mahalanobis distance, the paper aims to uncover correlations between different classes, thus enhancing the effectiveness of OoD detection. To this end, we also extend the state-of-the-art segmentation model, DeepLabV3+, to enable OoD sample detection in this paper. Specifically, this paper proposes a novel backbone network, SOD-ResNet101, for extracting contextual and multi-scale semantic information, leveraging the class correlation feature of the Mahalanobis distance to enhance the detection performance of out-of-distribution objects. Notably, our approach eliminates the need for external datasets or separate network training, making it highly applicable to existing pretraining segmentation models.
Keywords: Semantic segmentation, deep learning, anomaly segmentation, automatic driving, out-of-distribution detection
DOI: 10.3233/JIFS-237799
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl