Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kumar, Geethu S.; * | Ankayarkanni, B.
Affiliations: Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
Correspondence: [*] Corresponding author. Geethu S. Kumar, Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai- 600 119, Tamilnadu, India. E-mail: geethuskumar14@gmail.com.
Abstract: Facial Emotion Recognition (FER) is a powerful tool for gaining insights into human behaviour and well-being by precisely quantifying a wide range of emotions especially stress, through the analysis of facial images. Detecting stress using FER entails meticulously examining subtle facial cues, such as changes in eye movements, brow furrowing, lip tightening, and muscle contractions. To assure effectiveness and real-time processing, FER approaches based on deep learning and artificial intelligence (AI) techniques was created using edge modules. This research introduces a novel approach for identifying stress, leveraging the Conv-XGBoost Algorithm to analyse facial emotions. The proposed model sustain rigorous evaluation techniques, for employing key metrics examination such as the F1 score, validation accuracy, precision, and recall rate to assess its real-world reliability and robustness. This comprehensive analysis and validation proved the model’s practical utility in facial analysis. Integrating the Conv-XGBoost Algorithm with facial emotion analysis represents a promising and highly accurate solution for efficient stress detection. The method surpasses existing literature and demonstrate significant potential for practical applications based on well-validated data.
Keywords: Stress, emotion recognition, Conv-XGBoost, deep learning, facial expression
DOI: 10.3233/JIFS-237820
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl