Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected papers from the International Symposium on Applied Electromagnetics and Mechanics - ISEM 2019
Guest editors: Jinhao Qiu, Ke Xiong and Hongli Ji
Article type: Research Article
Authors: Dong, Guangxua; c | Ma, Chichengb | Zhang, Fengc | Luo, Yajunc | Bi, Chuanxinga;
Affiliations: [a] Institute of Sound and Vibration Research, Hefei University of Technology, Hefei, China | [b] School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo, China | [c] State Key Laboratory for Strength and Vibration of Mechanical Structure, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
Correspondence: [*] Corresponding author: Chuanxing Bi, Institute of Sound and Vibration Research, Hefei University of Technology, Hefei 230009, China. E-mail: cxbi@hfut.edu.cn
Abstract: To suppress the low frequency vibrations of airborne photoelectric system and improve measurement accuracy, a novel passive airborne photoelectric quasi-zero stiffness platform (APQZSP), which is composed of upper/bottom planes, anti-shaking structure and six quasi-zero stiffness (QZS) legs, is designed. The QZS leg is constructed by connecting the folded beam spring with magnetic negative stiffness spring (MNSS) in parallel. According to current model, the magnetic force and negative stiffness of MNSS are derived. As the friction damping is introduced with anti-shaking structure, the isolation performance of the platform under friction damping is investigated based on harmonic balance method. Then the effect of damping and excitation on the isolation performance is analyzed. The results indicate that with the QZS technology, the resonant frequency of the platform is reduced and the low frequency vibrations can be effectively isolated with APQZSP. Moreover, the friction damping can maintain the displacement transmissibility at unity as long as the excitation frequency is lower than the break-loose frequency, and then the resonance can be avoided.
Keywords: Vibration isolation, magnetic negative stiffness, friction damping, non-resonant response
DOI: 10.3233/JAE-209336
Journal: International Journal of Applied Electromagnetics and Mechanics, vol. 64, no. 1-4, pp. 315-324, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl