Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 290.00Impact Factor 2024: 1.1
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
- Physics and mechanics of electromagnetic materials and devices
- Computational electromagnetic in materials and devices
- Applications of electromagnetic fields and forces
The three interrelated key subjects - materials, electromagnetics and mechanics - include the following aspects: control, micromachines, intelligent structure, inverse problem, eddy current analysis, electromagnetic NDE, magnetic materials, magnetoelastic effects in materials, bioelectromagnetics, magnetosolid mechanics, magnetic levitations, applied physics of superconductors, superconducting magnet technology, superconducting propulsion system, nuclear fusion reactor components and wave propagation in electromagnetic fields.
Authors: Ren, Ningning | Fan, Le | Yang, Keke
Article Type: Research Article
Abstract: This paper proposes an analytical method to calculate the on-load magnetic field, Back electromotive force (BEMF) and torque of the surface-mounted permanent-magnet vernier machine (SMPMVM) accounting for slots, tooth-tips, flux modulation pole slots (FMPS) and the shape of magnet. The on-load magnetic field is predicted according to the surface-current method of permanent magnet, subdomain model and the superposition principle. BEMF and torque are calculated based on the magnetic field. The results show that THD of open-circuit and on-load radial flux density in the SMPMVM with concentric magnet poles is smaller than that in the conventional SMPMVM with eccentric magnet poles. …30th and 50th harmonic orders are obvious between two motors. Moreover, the peak cogging torque of the motor with concentric magnet poles is almost six times of the peak cogging torque of motor with eccentric magnet poles. The finite-element and experimental results confirm that the developed analytical method has high accuracy for predicting the magnetic field, BEMF, cogging torque and on-load electro-magnetic torque of SMPMVM with different shape of magnet. Show more
Keywords: Permanent-magnet vernier machines (PMVM), shape of magnet, subdomain model, equivalent surface current, magnetic field
DOI: 10.3233/JAE-230047
Citation: International Journal of Applied Electromagnetics and Mechanics, vol. 74, no. 1, pp. 1-21, 2024
Authors: Jiang, Shanyi | Pang, Xinliang | Chang, Yunfen | Cui, Jie | Han, Yubing
Article Type: Research Article
Abstract: In this study, we investigated the coupling features of the nuclear electromagnetic pulse (NEMP) on overhead cables in the middle-and-far regions, different from the transmission line model commonly used for field-line coupling in high-frequency cases, using a simpler lumped approximation to solve the electrically small size model in low-frequency cases. To verify its effectiveness, a simulation model with the same conditions was set up using the software of Computer Simulation Technology (CST), and cable coupling experiments were performed in a laboratory environment using a bounded-wave electromagnetic pulse simulator. The calculated results of the lumped approximation circuit were compared with the …CST simulation and measured results, and the agreement was good. The results also shows that the load exhibits a differential response in the case of the low impedance and it is consistent with the excitation signal in the case of the high impedance. Finally, some more experiments were constructed to analyzed the effect of different cable parameters on the cable load response through experiments, and the experimental results are also in general agreement with the theoretical analysis, in which the induced signal of the low-impedance load is mainly determined by the magnetic field in the direction normal to the cable and the ground loop and the induced signal of the high-impedance load is mainly determined by the electric field in the direction of the height of the cable erection. Show more
Keywords: Nuclear electromagnetic pulse (NEMP) in the middle-and-far regions, cable coupling, electrically small size model, bounded-wave simulator experiments, digital integral
DOI: 10.3233/JAE-230010
Citation: International Journal of Applied Electromagnetics and Mechanics, vol. 74, no. 1, pp. 23-42, 2024
Authors: Silue, Dozohoua | Labidi, Mondher | Choubani, Fethi
Article Type: Review Article
Abstract: In this paper, a small antenna is proposed to diagnose skin sarcoma at an embryonic stage. The antenna has an area of 30.54 × 15.27 mm2 and resonates at 1429 MHz with a reflection coefficient of −17.64 dB. The structure consists of a 35 μm copper sheet etched on a 1.6 mm FR-4 substrate. The diagnosis is based on the resonance frequency shift, and the SAR (Specific Absorption Rate) variation when the antenna is positioned on malignant tissue. For the simulations, a three-layer body phantom (skin, fat, muscle), and a half-sphere tumor phantom were considered. Simulations of the antenna performances showed that for a …tumor of 100 μm, the resonant frequency, and the SAR decrease by 2 MHz, and 1.09 mW/Kg, respectively. In addition to sarcoma detection, the antenna’s 3.6 dBi gain allows for 124.47 m biomedical communication links in a complex environment. Show more
Keywords: Small antenna, early cancer diagnosis, skin sarcoma, frequency shift detection, scale of cancer diagnosis
DOI: 10.3233/JAE-230048
Citation: International Journal of Applied Electromagnetics and Mechanics, vol. 74, no. 1, pp. 43-56, 2024
Authors: Yu, Zhiqing | Zhao, Jianhui | Wei, Rongqiang
Article Type: Research Article
Abstract: The dynamic response and operational reliability of high-speed solenoid valve (HSV) for diesel engine injector are the main indicators to measure their performance. At high-frequency, the eddy current energy and Joule energy generated by the HSV will be converted into heat, which has a significant impact on the service life of HSV. The optimization of HSV involves the interaction between energy loss and the dynamic response of HSV. To optimize the HSV dynamic response time considering energy loss, the HSV work process simulation model was established in this paper, and the model was verified based on armature lift experimental data. …Without changing the structural parameters of the HSV, the four parameters of electroconductibility, spring stiffness, damping coefficient, and coil resistance were selected as the key parameters affecting the dynamic response and energy loss. The response surface models (RSMs) of opening response time, closing response time, eddy current energy and Joule energy of the HSV were constructed by using the smoothing spline-analysis of variance method. The multi-objective cooperation optimization of HSV under the interaction of dynamic response characteristics and energy loss was completed by using non-dominated sorting genetic algorithms. After optimization, the opening and closing response times of HSV were reduced by 15.1% and 16.6% respectively, while the eddy current energy and Joule energy were reduced by 5.2% and 48.4% respectively. In this paper, the dynamic response and energy loss were jointly optimized. The presented results provide theory instruction for multi-objective cooperative optimization of HSV. Show more
Keywords: High-speed solenoid valve, dynamic response, energy loss, NSGA-II, multi-objective cooperation optimization
DOI: 10.3233/JAE-230099
Citation: International Journal of Applied Electromagnetics and Mechanics, vol. 74, no. 1, pp. 57-77, 2024
Authors: Liu, Qing | Ge, Ruihuan | Wang, Li | Ren, Tianming | Feng, Ming
Article Type: Research Article
Abstract: A single-structured hybrid gas-magnetic bearing (HGMB) has been proposed for frequent start/stop occasions, which eliminates foil structures or static pressure systems by using the closed magnetic poles of the active magnetic bearing (AMB) as the bushing of the gas bearing. This allows the proposed bearing to realize the functions of both AMB and gas bearing with a single bearing structure. In this paper, the bias currents of AMB, aimed for enhanced load capacity and dynamic characteristics, are omitted to reduce power consumption and heat. The combination of zero-bias AMB and rigid self-acting gas bearing in a single bearing structure is …therefore proposed. The rotor orbits of gas bearing, AMB, single-structured HGMB, and single-structured zero-bias HGMB in conditions of varied horizontal and vertical external loads are simulated. The dynamic performances during the run-up processes of AMB, HGMB, and zero-bias HGMB are investigated. The electromagnetic forces of each kind of bearing are compared. Numerical results demonstrate that by applying the single-structured zero-bias HGMB, the power consumption can be significantly reduced in contrast with pure AMB and single-structured HGMB. The reduced load capacity and dynamic characteristics of zero-bias AMB can be compensated by the rigid self-acting gas bearing, making the single-structured zero-bias HGMB an ideal candidate for cryogenic, ultra-high speed as well as frequent start/stop occasions. Show more
Keywords: Single-structured hybrid gas-magnetic bearing, zero-bias AMB, rotordynamic performance, frequent start/stops
DOI: 10.3233/JAE-230042
Citation: International Journal of Applied Electromagnetics and Mechanics, vol. 74, no. 1, pp. 79-99, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl