Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected papers from the Heating by Electromagnetic Sources Conference 2013 (HES-2013)
Guest editors: Egbert Baake, Paolo Di Barba, Fabrizio Dughiero and Michele Forzan
Article type: Research Article
Authors: Schumacher, D.a; * | Karcher, Ch.a
Affiliations: [a] Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, Ilmenau, Germany | Leibniz University of Hannover, Hannover, Germany | University of Pavia, Pavia, Italy | University of Padua, Padua, Italy
Correspondence: [*] Corresponding author: D. Schumacher, Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, P.O. Box 100565, D-98684 Ilmenau, Germany. Tel.: +49 3677 69 2465; Fax: +49 3677 69 2411; E-mail: dandan.schumacher@tu-ilmenau.de
Abstract: This paper attempts to present a novel development of an electromagnetic non-contact surface velocity measurement technique in electrically conducting liquids which could be applied in high-temperature metallurgical processes involving metal melts. The technique is based on Lorentz force velocimetry, i.e. on measuring the force which is generated by the interactions of the melt flow and an externally applied magnetic field that is spanned by permanent magnet system. The electromagnetically induced force pushes the magnet system into the direction of the flow and can be measured using a force sensor that is attached to the magnet system. As the measured force linearly depends on melt velocity, a non-contact evaluation of the velocity can be achieved. However, the recorded force also depends on the electrical conductivity of the melt. In application this material property is a priori unknown as it strongly depends on both temperature and composition of the melt. Hence, calibration of such a measuring device becomes a cumbersome task. Our development aims to circumvent this deficit by applying a time-of-flight technique. According to this principle we design and test a prototype of sensor for measuring free-surface velocity. In the model experiments we use both solid bodies and the liquid metal GaInSn as test liquids.
Keywords: Time-of-flight Lorentz force velocimetry, Meniscus Velocity Sensor, free-surface liquid metal flow
DOI: 10.3233/JAE-141758
Journal: International Journal of Applied Electromagnetics and Mechanics, vol. 44, no. 2, pp. 183-191, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl