Purchase individual online access for 1 year to this journal.
Price: EUR 150.00
ISSN 0928-7329 (P)
ISSN
1878-7401 (E)
Impact Factor 2024: 1.4
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured.
The following types of contributions and areas are considered:
1. Original articles:
Technology development in medicine: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine.
Significance of medical technology and informatics for healthcare: The appropriateness, efficacy and usefulness deriving from the application of engineering methods, devices and informatics in medicine and with respect to public health are discussed.
2. Technical notes:
Short communications on novel technical developments with relevance for clinical medicine.
3. Reviews and tutorials (upon invitation only):
Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented.
4. Minisymposia (upon invitation only):
Under the leadership of a Special Editor, controversial issues relating to healthcare are highlighted and discussed by various authors.
Abstract: BACKGROUND: The air kerma radiation doses have gained much attention since the operating room interventional radiology is a place where medical staff are exposed to a fluoroscopy environment and gain a cumulative dose during the uterine artery embolization procedure. OBJECTIVE: We aimed to evaluate the radiation dose received by medical staff by applying a flat X-ray machine in the surgical room during uterine artery embolization. METHODS: An ATOM humanoid model was laid on the operating table and simulated a patient. The scattered radiation dose received by the radiologist, anesthetist and radiologic technologist was…evaluated. The scintillation detector was adopted. The measurement points were 50 cm, 100 cm and 150 cm above the floor, representing the limbs, abdomen and thyroid level, respectively. We compared the X-rays under different tube voltages of 70, 80, and 90, respectively and frames per second (FPS) of 30, 15, and 7.5, respectively. We configured the dose level per pulse of 40 nGy with a fixed detector. RESULTS: In Section 1, when the tube voltage was 70 kVp and 7.5 FPS, the average radiation doses of limbs, abdomen and thyroid level was 0.48, 1.3 and 1.9 μ Sv/min respectively. When the tube voltage was 80 kVp and the fluoroscopy decreases from 30 FPS to 7.5 FPS, 58% of the radiation dose was reduced. When the tube voltage was 90 kVp, the radiation dose in the lead garment increased 31–177% in comparison to when the tube voltage was 80 kVp. Sections 2 and 3 were far away from the central ray, so the highest radiation dose 100 cm above the floor were 0.05 and 0.02 μ Sv/min. CONCLUSIONS: Lead garment can effectively reduce medical staff from occupational doses with an average attenuation rate of 90%. 80 kVp was most commonly used. Fluoroscopy 7.5 FPS was used 100 cm above the floor in A section and the lowest radiation dose was 1.33 μ Sv/min. The operator should decrease the duration of X-rays or adopt suspended lead shielding to decrease the radiation dose received by the operator. When kVp increases, the penetration increases. Decreasing FPS cannot decrease occupational doses of medical staff.
Show more
Abstract: BACKGROUND: The current excitation-contraction coupling model of fast-twitch skeletal muscle fibers cannot completely simulate the excitation-contraction process. OBJECTIVE: To solve this problem, this study proposes an excitation-contraction model of fast-twitch skeletal muscle fibers based on the physiological structure and contractile properties of half-sarcomeres. METHODS: The model includes the action potential model of fast-twitch fiber membranes and transverse tubule membranes, the cycle model of 𝐶𝑎 2 + in myofibril, the cross-bridge cycle model, and the fatigue model of metabolism. RESULTS: Finally, detailed analyses of the results…from the simulation are conducted using the Simulink toolbox in MATLAB. Two conditions, non-coincidence and coincidence, are analyzed for both the thick and thin myofilaments. CONCLUSIONS: The simulation results of two groups of models are the same as the previous research results, which validates the accuracy of models.
Show more
Abstract: BACKGROUND: Video-based face recognition (VFR) is one of the frontier topics in the domain of computer vision, which aims to automatically track and recognize facial regions of interests (ROIs) in video sequences. OBJECTIVE: In videos with multiple faces, the trajectories of individuals are incredibly complex. This is less studied than videos with a single face per frame. METHODS: In this paper, we present a multi-trajectory incremental learning (MTIL) algorithm, which categorizes trajectories using a Euclidean distance-based greedy algorithm and estimates the most likely labels for each trajectory by incremental learning to correct their…classification and improve the accuracy of recognition. Furthermore, this study proposes an enhanced detection method that combines face detection with a robust tracking-learning-detection (TLD) algorithm to improve the performance of face detection in video. The method can also be extended for medical video recognition applications such as gesture recognition control based medical system. RESULTS: Experiments on Honda/UCSD and BMP (seq_mb) database demonstrate that our method can improve the face detection and face recognition (single or multiple) performance. The method also performs well on the gesture recognition system. CONCLUSION: The proposed MTIL algorithm can significantly improve the performance of the VFR system and the gesture recognition system.
Show more
Keywords: Multi-target face recognition, enhanced face detection, multi-trajectory, gesture recognition
Abstract: BACKGROUND: In hospitals, some problems still exist, such as transfusion reaction that cannot be dealt with in time, medical staff cannot observe the physiological information of the infusion patients in real time, and the infusion speed cannot be controlled smartly. OBJECTIVE: To address these problems, we propose a method for intelligent monitoring and designed a controller for dripping speed regulation. METHODS: A photoelectric sensor was used to obtain the heart rate (HR) information, and a PID parameter self-tuning controller based on the fuzzy control principle was developed to establish a multi-stage adaptive control…method based on HR feedback. By controlling the rotation of the motor to drive the cam to control the drip rate smartly. Also, the infusion and physiological information are transmitted to the nurse station to monitor the possible transfusion reaction. RESULTS: The experiments show that the intelligent infusion controller can achieve HR signal detection with an average accuracy of over 94%, dripping speed detection and adjustment with an average accuracy of above 98% and adjustment time within 35 seconds. CONCLUSION: Our study proved that the intelligent infusion controller can control the infusion process intelligently and effectively, and has excellent reliability, small steady-state error and high practical value.
Show more
Keywords: Infusion reaction, intelligent feedback, dripping speed control
Abstract: OBJECTIVE: In our study, the influence of PEMF on skeleton morphology and bone metabolism on rats with disuse osteoporosis was investigated, and the possibility of using it for the treatment of disuse osteoporosis was explored. METHODS: The rats in the ALN group were treated with alendronate, and the rats in the PEMF group were exposed to pulsed electromagnetic fields (3.82 mT, 10 Hz) for 40 mind - 1 . Rats were sacrificed by the end of 2, 4, 8 and 12 weeks, and serum and right leg bones were collected. Serum BMP-2,…BGP concentrations and bone metabolism and biomechanical parameters were measured. RESULTS: The bone structural mechanical indices and material mechanical indices of the right femur in all groups of mice during weeks 2 and 4 were decreased. At week 8 the bone structural mechanical index and maximum stress of the right femur in the ALN group were markedly raised compared with the CON group (P < 0.01). Only maximum stress and strain were improved in the ALN group and had a significant difference (P < 0.05) at week 12. The serum BGP and BMP-2 concentration in the PEMF and ALN groups was increased (P < 0.05) at week 2, but this increase was not synchronized. After 8 weeks, BGP and BMP-2 level in the PEMF group was observably elevated (P < 0.01) in contrast to the ALN group. CONCLUSION: From the experimental time interval analysis, PEMF can improve the mechanical stability of bone structure more gently and permanently than alendronate.
Show more
Keywords: Pulsed electromagnetic field, osteoporosis, osteocalcin, bone biomechanics, bone morphogenetic protein-2 (BMP-2)
Abstract: BACKGROUND: The large differences of electrical characteristics can be used to reflect the physiological and pathological changes about biological tissues, and it can provide evidence for the early diagnosis and treatment of cancer in potential applications. OBJECTIVE: This paper describes a method called Applied Current Thermoacoustic Imaging (ACTAI) and explores the theory and demonstrates a low conductivity numerical simulation and fresh pork experimental studies. METHODS: In this paper, firstly, the principle of ACTAI is studied. In ACTAI, a target is applied with a microsecond width Gaussian pulse current. Then the target absorbs Joule…heat and expands instantaneously, sending out thermoacoustic waves. The waves contain the conductivity information of the target. The waves received by sound transducers are processed by the time inversion method to reconstruct the sound source distribution of the target to illustrate the conductivity information of the target. Secondly, a square model with low conductivity was used as a target to conduct numerical simulation of ACTAI. Lastly, a fresh pork experiment study was conducted. RESULTS: The presented experimental results suggest that ACTAI can identify the conductivity changes information of the target with perfect imagery contrast and deep penetration. CONCLUSION: The ACTAI modality would benefit from the noncontact measurement and can be convenient for clinical application.
Show more
Keywords: Thermoacoustic imaging, pulse current injection, low conductivity phantoms
Abstract: BACKGROUND: Mental workload is one of the contributing factors to human errors in road accidents or other potentially adverse incidents. OBJECTIVE: This research probes the effects of mental workload on the electroencephalographic (EEG) and electrocardiogram (ECG) of subjects in visual monitoring tasks, based on which a comprehensive evaluation model for mental workload is established effectively. METHODS: Three degrees of mental workload were obtained by monitoring tasks with different levels of difficulty. 20 healthy subjects were selected to take part in the research. RESULTS: The subjective scores showed a significant increase…with the increase of task difficulty, meanwhile the reaction time (RT) increased and the accuracy decreased significantly, which proved the validity of three degrees of mental workload induced. For the EEG parameters, a significant decrease of θ energy was found in Frontal, Parietal and Occipital with the increase of level of mental workload, as well as a significant decrease of α energy in Frontal, Central and Occipital, meanwhile a significant increase of β energy occurred in Frontal and Occipital. There was a significant decrease of α /θ in Occipital, and significant increases of θ /β and (α + β ) / θ in Frontal, Central and Occipital, meanwhile (α + θ ) / β and WPE decreased significantly in Frontal and Occipital. Among the ECG parameters, it was shown that Mean RR, RMSSD, HF_norm and SampEn decreased significantly with the increase of task difficulty, while LF_norm and LF/HF showed significant increases. These EEG indictors in Occipital and ECG indictors were chosen and constituted a multidimensional original sample. Principal Component Analysis (PCA) was used to extract the principal elements and decreased the dimension of sample space in order to simplify the calculation, based on which an effective classification model with accuracy of 80% was achieved by support vector machine (SVM). CONCLUSION: This study demonstrates that the proposed algorithm can be applied to mental workload monitoring.
Show more
Abstract: BACKGROUND: Minimally invasive surgery (MIS), unlike open surgery in which surgeons can perform surgery directly, is performed using miniaturized instruments with indirect but careful observation of the surgical site. OBJECTIVE: Instrument detection is a crucial requirement in conventional and robot-assisted MIS, which can also be very useful during surgical training. In this paper, we propose a novel framework of using two three-layer convolutional neural networks (CNNs) in a series to detect surgical instrument in in-vivo video frames. METHODS: The two convolutional neural networks proposed in this paper have different tasks. (i) The…former CNN is trained to detect the edges points of the instrument shaft directly from images patches. (ii) The latter is trained to locate the instrument tip also from images patches after the former detection finishes. RESULTS: We validated our method on the publicly available EndoVisSub dataset and a standard dataset, and it detected tools with an accuracy of 91.2% and 75% respectively. CONCLUSION: Our two-step detection method achieves better performance than other existing approaches in terms of detection accuracy.
Show more
Abstract: BACKGROUND: Traditional Chinese medicine (TCM) massage has a better effect on treating infant diarrhea compared to medical treatment. The TCM doctors need to be trained to master professional massage techniques. Traditional Chinese massage training relies on the students’ understanding ability, and cannot accurately record the students’ operating information. This situation leads to insufficient clinical massage skills of the students. OBJECTIVE: This paper proposes a novel massage training platform to quantitatively perceive the massage techniques of students. METHODS: The paper proposed two types of flexible array sensors, which are arranged and placed into the bionic…baby according to the position of the human acupoints. The massage techniques of the training object can be analyzed and evaluated during the massage process by studying the voltage from pressure sensors when the participants massage the bionic infant. RESULTS: A medical student was invited to conduct the massage training experiment, and the massage information included the operating strength, massage frequency and the massage direction, which were recorded and analyzed through the training platform. CONCLUSION: The platform can perceive the parameters related to the massage technique of students and can be used for medical training.
Show more
Keywords: Massage, pressure sensor, medical training