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Abstract.
BACKGROUND: Minimally invasive surgery (MIS), unlike open surgery in which surgeons can perform surgery directly, is
performed using miniaturized instruments with indirect but careful observation of the surgical site.
OBJECTIVE: Instrument detection is a crucial requirement in conventional and robot-assisted MIS, which can also be very
useful during surgical training. In this paper, we propose a novel framework of using two three-layer convolutional neural
networks (CNNs) in a series to detect surgical instrument in in-vivo video frames.
METHODS: The two convolutional neural networks proposed in this paper have different tasks. (i) The former CNN is trained
to detect the edges points of the instrument shaft directly from images patches. (ii) The latter is trained to locate the instrument
tip also from images patches after the former detection finishes.
RESULTS: We validated our method on the publicly available EndoVisSub dataset and a standard dataset, and it detected tools
with an accuracy of 91.2% and 75% respectively.
CONCLUSION: Our two-step detection method achieves better performance than other existing approaches in terms of
detection accuracy.
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1. Introduction

Computer vision-based detection of surgical instruments in computer-assisted intervention (CAI)
systems for MIS has received a great deal of attention recently [1]. This is largely due to the requirements
for more accurate detection of surgical instruments, especially in robot-assisted systems [2,3]. Compared
with traditional open surgery, MIS has many advantages including less pain, less risk of infection and less
blood loss. However, because of the indirect observation of the surgery site, it could be challenging for
surgeons to carry out such a surgery. Under such conditions, locating instruments in the video can help
surgeons to lighten their burden of finding the instruments during an operation, which is beneficial to
both surgeons and patients.

In recent years, many image-based methods have been proposed to detect instruments in 2D or 3D.
Conventional methods use low-level features to locate instruments in images [4]. For instance, Augustine
and Voros [5] proposed a simple and robust algorithm to estimate the 2D/3D pose of instruments based
on image processing. Another example is the study by Rieke et al. [6], which employed the RGB and
HOG feature of the instrument for the detection task.
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Powerful deep learning algorithms, which can learn hierarchical features through their structure and
are widely used in the field of computer vision [7,8], have become the mainstream methods in instrument
tracking or detection. The modified and extended U-net [9] architecture was proposed by Kurmann et
al. [10] for 2D vision-based recognition and pose estimation of multiple instruments, while the fully
convolutional network [11] (FCN) was employed for tracking [12]. Due to the interdependence of location
and segmentation of the surgical instrument, Laina et al. [13] proposed to use CSL model to perform
instrument segmentation and pose estimation simultaneously. The fast RCNN [14] was also used to
output a bounding box of surgical instruments but not a precise location with a region proposal network
(RPN [15]). Moreover, to get a more precise location, more than one convolutional neural network may
be used in some detection methods. Mishra et al. [16] proposed a deep learning approach based on late
fusion CNN responses over pyramidally decomposed frames to locate the instrument tip. The network
used above is deep and it is hard to train. We aimed to find a method using CNN of fewer layers that
makes it easier to solve the detection problem.

In this paper, we propose a method based on two three-layer networks. The surgical instrument in MIS
is usually rigid and straight, so we propose to use a two-step method that firstly detects the edges of the
instrument and then the instrument tip will be predicted along its mid axis, which is the diagonal line of
the two detected straight edge lines. As for the first step, edges detection, there are many methods that can
be used. Comparing the edge detection using CNN [17] with other three edge detection methods [18–20],
we finally decided to apply CNN to detect the edges in this paper. Edge detection using CNN is simple
and efficient and, more importantly, is easy to implement. The next step is tip location. Because we know
that the instrument tip is on the mid axis of the instrument, another CNN which has the same architecture
as the former one is trained to determine the instrument tip, and both CNNs are trained in an end-to-end
fashion. We validated our method on the EndoVisSub dataset and a standard dataset, and it shows good
performance in terms of location accuracy.

The paper is organized as follows. In Section 2, we explain our method in detail. In Section 3, the
experiments and results are given. Section 4 concludes this paper.

2. Surgical instrument detection method

2.1. Instrument detection model

The structure of surgical instruments in an image frame can be viewed as two parts that are a straight
shaft and an articulated end-effector [1]. In light of this, we divided our detection process into two main
stages. As shown in Fig. 1, our detection system has two CNN in series and some image processing
methods are applied in it. The two main stages are as follows: (i) Stage 1, detect the two edges of the
instrument using a trained CNN followed by Hough transform [21] and then get the mid axis which is the
diagonal line of two straight edges. (ii) Stage 2, locate the instrument tip based on a CNN along the mid
axis. Although these two CNNs have the same architecture, they are trained separately.

2.2. Edge detection of the instrument

In stage 1, two straight edges of the instrument are detected by edge detection sub-network. There are
many edge detection methods, such as canny edge detection, structure forest and line segment detection,
as shown in Fig. 2. Because of the complex background and other disturbing factors, (a), (b) and (c) can
hardly get the two straight edges of the shaft as we want it, and there are always more than two detected
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Fig. 1. The framework of the proposed detection method. The green lines are the predicted edges of the instrument, and the
yellow line represents its mid axis in this video frame. The predicted instrument tip location is marked by a red colored ‘+’.

Fig. 2. Different edge detection methods: (a) Canny edge detection and Hough transform, (b) structured forest, (c) line segment
detector (LSD) and (d) our method. The datasets from top to bottom are the Endovissub dataset and the standard dataset.

edge lines. Therefore, our method is more satisfying under such condition. Our detector takes an RGB
video frame as input and predicts edge points that make up the edge map, and then using Hough transform
we get two straight edge lines of the instrument shaft.

The architecture of CNN used in both stages is shown in Fig. 3. It consists of two convolutional
layers, two rectified linear units (ReLU), a fully connected (fc) layer and a softmax layer. Compared
with traditional CNN architecture, the pooling layer is removed, but it does not influence the accuracy of
our detection. The network outputs a discrete probability P = (p0, p1) over two categories (background
patch/edge patch). The softmax layer is defined as:

pc =
ezc∑2

m=1 e
zm

, c ∈ {0, 1} (1)

where P = (p0, p1) and Z = (z0, z1) represent the output and input of the softmax layer.
In our approach, instrument edge detection in the RGB image is regarded as a classification problem

that patches of size 23*23*3 centered at points are labeled as edge patches or background patches, and
their central points are either edge points or background points. We train the network using a cross-entry
loss function:

l = −
1∑

c=0

p̂c · ln (pc) (2)
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Fig. 3. Architecture of the CNN used in the proposed method

where P̂ = (p̂0, p̂1) represents the ground truth probability distribution. We let P̂ = (1, 0) if the input
is a background patch and P̂ = (0, 1) if it is an edge patch. P = (p0, p1) is the predicted probability
distribution.

While testing, Convnet1 takes patches of size 23*23*3 as the input image and makes predictions on
whether their centers are edge points or background points, and then the edge map made of edge points is
predicted after all the edge points are found in that frame. As we aimed to get two straight edge lines of
the instrument shaft, we applied Hough transform to produce the final edge map.

2.3. Tip location of the instrument

In stage 2, the instrument tip is predicted by Convnet2. This network has the same architecture as that
used in stage 1. The difference is that patches of size of 23*23*3 which fed into Convnet2 are labeled as
instrument tip patch or background patches, and their central point is either instrument tip or background
point during training period.

As seen in Fig. 1, along the mid axis which is the diagonal line of the two straight edge lines, the
instrument tip is detected by Convnet2. We know that the instrument tip is on this mid axis, so we
select the patches of which the central pixels are on the mid axis and feed them into Convnet2 to get the
predicted probabilities of being instrument tip. Lastly, we can determine the instrument tip on whether it
has the highest probability.

3. Experiment and results

3.1. Data preparation and CNN training

To validate the proposed method, we compared our method to three other methods on two benchmark
datasets. These are the EndoVisSub dataset [22] (300 frames of size 640*480) and the standard dataset [23]
(400 frames of size 640*480). Before getting the training patches, we resized these video frames into
481*321 pixels. Then we divided these video frames into three subparts, 80% of frames for training and
the rest 20% for testing. The ground truth annotations of the instrument tip and edge map, which were
saved in the form of 2D coordinates, are available for analysis and comparison.

As shown in Fig. 4, the left one is the training framework for Convnet1 and the right one for Convnet2.
In order to obtain patches as positive samples for the training, we cropped every video frame into patches
of size of 23*23*3 of which the centers are ground-truth annotations colored in red ‘x’ in the figure. As
for negative samples, we obtained patches whose center are colored in blue ‘x’ in the figure, which does
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Fig. 4. Examples of patches used for training. ‘P’ represents positive sample and ‘N’ represents negative sample.

Fig. 5. Test examples of each method. Approches from left to right are SWM [24], AF [25], SIDL [16] and our method. The top
row represents the EndoVisSub dataset, and the bottom row represents the standard dataset.

not locate on the edge map or instrument tip. However, there are so many negative samples that we cannot
select all of them in a video frame. We therefore selected a part of negative patches randomly and then
fed these negative/positive patches into the Convnet for training.

To evaluate the performance of the method, we compared it to three other methods. The methods
we chose are: locating instrument tip directly by Convnet2-based traditional sliding window method
(SWM) [24], tracking with an active filter (AF) [25], and scale invariant deep learning-based detection
approach (SIDL) [16]. These methods were all implemented in Matlab.

We used the Matconvnet toolbox of Matlab to train both of our networks on CPU. Convnet1 was
trained with stochastic gradient descent (SGD) over 20 epochs with a learning rate of 10−4, weight decay
of 5*10−4, momentum of 0.9 and batch size of 125, and Convnet2 was trained over 25 epochs with a
learning rate of 10−3, batch size of 100, and other super-parameters the same as Convent1. We did not
stop the training process until the error rate on the validation set achieved a minimum.

3.2. Results

The test video images using our two-stage method for two datasets are shown in Fig. 5. There are
several disturbing factors in the test frames, such as illumination changing, motion blur and complex
operating background which sometimes make the detector cause bigger errors.
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Table 1
Accuracy rates for every method on every dataset

Dataset
Methods

SWM AF SIDL Ours

Endovissub dataset 35% 66.7% 68.3% 75%
Standard dataset 48.8% 80% 86.3% 91.2%

Table 2
Performance comparison when using different configurations. C represents convolutional
layer, P and F are pooling layer and fully connected layer respectively

Convnet1 Convnet2 Orientation error Accuracy rate
Network Patch size Network Patch size (◦) Mean (Std.Dev.) (%)
CCF 23*23*3 CCF 23*23*3 0.35 (0.25) 91%
CCF 23*23*3 CCCF 23*23*3 0.35 (0.25) 90%
CCF 29*29*3 CCF 23*23*3 0.45 (0.52) 87%
CCF 17*17*3 CCF 23*23*3 0.88 (0.62) 88%
CCCF 23*23*3 CCF 23*23*3 0.40 (0.45) 88%
CCF 23*23*3 CPCF 23*23*3 0.35 (0.25) 85%
CCF 23*23*3 CCF 17*17*3 0.35 (0.25) 89%
CCF 23*23*3 CCF 29*29*3 0.35 (0.25) 87%
CPCF 23*23*3 CCF 23*23*3 0.58 (0.63) 86%

In order to evaluate the proposed method, for each testing image we compared the predicted tip location
to its manual annotation. The accuracy rates of four detectors are presented in Table 1. If the distance
between the predicted position and the ground truth is larger than 20 pixels in the frame image coordinate
system, we think the detector has lost the object in this frame.

3.3. Comparison of different configurations

We also tried different network structures and the size of image patches in our experiments. Table 2
compares the performance while using different networks by adding a pooling layer or another convolu-
tional layer and different input sizes which are 17*17*3, 23*23*3 and 29*29*3. However, as shown in
Table 2, adding a convolutional layer or pooling layer and using different input sizes can hardly improve
the performance. It shows that the networks used in our method are sufficient for this detection problem.

4. Conclusion

In this paper, we proposed a deep-learning method for instrument detection. Two CNNs of the same
architecture were used but they had different tasks. Convnet1 in stage 1 was trained to predict the edge
map of the instrument shaft, and Convnet2 in stage 2 was trained for tip location. Unlike previous work,
the architecture of the CNN used in this work is simple, which makes our method easier to implement.
Furthermore, the comparison experiment shows that our detector can locate the instrument tip with high
accuracy and also proves that edge detection in stage 1 is the dispensable part in our method. Finally, we
tried different networks and different patch sizes, but we found that they cannot improve the performance.
As for the shortcomings, we should mention that the image blurring caused by the instrument’s fast
moving can lead to bad detection results, and our method is limited to a straight instrument.

Detecting the surgical instrument in images is a challenging task, because there are always many
disturbing factors. For example, when multiple instruments are present, a part of them may be occluded,
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which can badly influence the tip detection. We will work on solving these challenges and limitations of
our method in the future.
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