Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Li, Chenliang | Yu, Xiaobing | Zhao, Wen-Xuan
Article Type: Research Article
Abstract: In today’s economy, information technology (IT) is vitally important, and the increasing use of the Internet, telecommunications services, and internal IT networks in organizations have led to rapid growth in the demands on big data processing. In general, site selection is a fundamental part of the design of a big data center (BDC), and a poor site decision can affect the sustainability of the facility. To construct a comprehensive assessment framework for a BDC, the following three categories of indicators are determined based on the “Specification for Design of Data Center” in GB50174-2017 of China: economic factors, natural climate environment …factors, and energy resources factors. After explaining the rationality of choosing these indicators in detail, an integrated method that combines the multi-criteria decision-making (MCDM) method and the multi-choice goal programming (MCGP) model is proposed. The proposed approach uses two phases to conduct the decision procedure. First, the preference ranking organization method for enrichment evaluation (PROMETHEE) method is applied to evaluate the economic factors. Then, the evaluation results are added to the MCGP model as one of the goals of multi-objective programming. Second, the remaining five sub-indicators and the evaluation results generated from the first phase are formulated as a complete MCGP model. Finally, an empirical study on the site selection for the BDC is implemented based on the proposed method. The result shows that Guiyang is the most suitable place for locating a BDC in China. Show more
Keywords: Big data center, PROMETHEE, MCGP model, MCDM method
DOI: 10.3233/JIFS-210319
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6495-6515, 2021
Authors: Li, Qiaoyang | Chen, Guiming | Li, Ziqi | Zhang, Yi | Xu, Lingliang
Article Type: Research Article
Abstract: To solve the problems of strong infrared radiation, poor continuous combat capability of the system, serious ablation of the launching device, and environmental pollution of the existing missile launching system, electromagnetic launch system (EMLS) has been studied for missile launch system. Combining the situation that the current research on missile electromagnetic launch system (MEMLS) mainly focuses on the key technical points and the deficiencies in the previous research on MEMLS, this paper establishes an effectiveness prediction model based on GRA-PCA-LSSVM, and discusses the investment efficiency of the system based on DEA. The experimental results prove that the established model is …reasonable, effective and superior, and provides a reference for the further improvement and development of MEMLS. Show more
Keywords: MEMLS, Grey relation analysis (GRA), Principal component analysis (PCA), Least square support vector machine (LSSVM), Data Envelopment Analysis (DEA)
DOI: 10.3233/JIFS-210353
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6517-6526, 2021
Authors: Li, Longmei | Zheng, Tingting | Yin, Wenjing | Wu, Qiuyue
Article Type: Research Article
Abstract: Entropy and cross-entropy are very vital for information discrimination under complicated Pythagorean fuzzy environment. Firstly, the novel score factors and indeterminacy factors of intuitionistic fuzzy sets (IFSs) are proposed, which are linear transformations of membership functions and non-membership functions. Based on them, the novel entropy measures and cross-entropy measures of an IFS are introduced using Jensen Shannon-divergence (J -divergence). They are more in line with actual fuzzy situations. Then the cases of Pythagorean fuzzy sets (PFSs) are extended. Pythagorean fuzzy entropy, parameterized Pythagorean fuzzy entropy, Pythagorean fuzzy cross-entropy, and weighted Pythagorean fuzzy cross-entropy measures are introduced consecutively based on the …novel score factors, indeterminacy factors and J -divergence. Then some comparative experiments prove the rationality and effectiveness of the novel entropy measures and cross-entropy measures. Additionally, the Pythagorean fuzzy entropy and cross-entropy measures are designed to solve pattern recognition and multiple criteria decision making (MCDM) problems. The numerical examples, by comparing with the existing ones, demonstrate the applicability and efficiency of the newly proposed models. Show more
Keywords: Pythagorean fuzzy entropy, Pythagorean fuzzy cross-entropy, parameterized Pythagorean fuzzy entropy, weighted Pythagorean fuzzy cross-entropy, score factor, indeterminacy factor
DOI: 10.3233/JIFS-210365
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6527-6546, 2021
Authors: Guo, Huijuan | Yao, Ruipu
Article Type: Research Article
Abstract: The symmetry between fuzzy evaluations and crisp numbers provides an effective solution to multiple attribute decision making (MADM) problems under fuzzy environments. Considering the effect of information distribution on decision making, a novel approach to MADM problems under the interval-valued q-rung orthopair fuzzy (Iq-ROF) environments is put forward. Firstly, the clustering method of interval-valued q-rung orthopair fuzzy numbers (Iq-ROFNs) is defined. Secondly, Iq-ROF density weighted arithmetic (Iq-ROFDWA) intermediate operator and Iq-ROF density weighted geometric average (Iq-ROFDWGA) intermediate operator are developed based on the density weighted intermediate operators for crisp numbers. Thirdly, combining the density weighted intermediate operators with the Iq-ROF …weighted aggregation operators, Iq-ROF density aggregation operators including Iq-ROF density weighted arithmetic (Iq-ROFDWAA) aggregation operator and Iq-ROF density weighted geometric (Iq-ROFDWGG) aggregation operator are proposed. Finally, effectiveness of the proposed method is verified through a numerical example. Show more
Keywords: Multiple attribute decision making (MADM), clustering, Iq-ROFDWAA aggregation operator, Iq-ROFDWGG aggregation operator
DOI: 10.3233/JIFS-210376
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6547-6560, 2021
Authors: Muhiuddin, G. | Mahboob, A. | Khan, N. M. | Al-Kadi, D.
Article Type: Research Article
Abstract: In this paper, we introduce new types of fuzzy (m , n )-ideals in ordered semigroups. In fact, the notion of (∈ , ∈ ∨ (κ * , q κ ))-fuzzy (m , n )-ideals of the ordered semigroups is introduced. Further, we present the characterzations of this notion in different ways. Then the (κ * , κ )-lower part of the (∈ , ∈ ∨ (κ * , q κ ))-fuzzy (m , n )-ideals is defined and its associated properties are investigated. After that, (m , n )-regular ordered semigroups are characterized in terms of its (∈ , ∈ ∨ (κ * , q κ …))-fuzzy (m , n )-ideals and their (κ * , κ )-lower parts. Show more
Keywords: Ordered semigroups, fuzzy sets, (∈ , ∈ ∨ (κ*, qκ))-fuzzy (m, n)-ideals, (m, n)-regular ordered semigroups
DOI: 10.3233/JIFS-210378
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6561-6574, 2021
Authors: Shi, Shuo | Huo, Changwei | Guo, Yingchun | Lean, Stephen | Yan, Gang | Yu, Ming
Article Type: Research Article
Abstract: Person re-identification with natural language description is a process of retrieving the corresponding person’s image from an image dataset according to a text description of the person. The key challenge in this cross-modal task is to extract visual and text features and construct loss functions to achieve cross-modal matching between text and image. Firstly, we designed a two-branch network framework for person re-identification with natural language description. In this framework we include the following: a Bi-directional Long Short-Term Memory (Bi-LSTM) network is used to extract text features and a truncated attention mechanism is proposed to select the principal component of …the text features; a MobileNet is used to extract image features. Secondly, we proposed a Cascade Loss Function (CLF), which includes cross-modal matching loss and single modal classification loss, both with relative entropy function, to fully exploit the identity-level information. The experimental results on the CUHK-PEDES dataset demonstrate that our method achieves better results in Top-5 and Top-10 than other current 10 state-of-the-art algorithms. Show more
Keywords: Person re-identification, cross-modal, natural language description, cascade loss function, truncated attention mechanism
DOI: 10.3233/JIFS-210382
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6575-6587, 2021
Authors: Rai, Ashok Kumar | Senthilkumar, Radha | Aruputharaj, Kannan
Article Type: Research Article
Abstract: Face recognition is one of the best applications of computer recognition and recent smart house applications. Therefore, it draws considerable attention from researchers. Several face recognition algorithms have been proposed in the last decade, but these methods did not give the efficient outcome. Therefore, this work introduces a novel constructive training algorithm for smart face recognition in door locking applications. The proposed Framed Recurrent Neural Network with Mutated Dragonfly Search Optimization (FRNN-MDSO) Strategy is applied to face recognition application. The steady preparing system has been utilized where the training designs are adapted steadily and are divided into completely different modules. …The facial feature process works on global and local features. After the feature extraction and selection process, employ the improved classifier followed by the Framed Recurrent Neural Network classification technique. Finally, the face image based on the feature library can be identified. The proposed Framed Recurrent Neural Network with Mutated Dragonfly Search Optimization starts with a single training pattern using Bidirectional Encoder Representations from Transformers (BERT) model. During network training, the Training Data (TD) decrease the Mean Square Error (MSE) while the matching process increases the algorithms generated which are trapped at the local minimum. The training data have been trained to increase the number of input forms (one after the other) until all the forms are selected and trained. An FRNN-MDSO based face recognition system is built, and face recognition is tested using hyperspectral Database parameters. The simulation results indicate that the proposed method acquires the associate grade optimum design of FRNN with MDSO methodology using the present constructive algorithm and prove the proposed FRNN-MDSO method’s effectiveness compared to the conventional architecture methods. Show more
Keywords: Face recognition, Framed Recurrent Neural Network(FRNN), Mutated Dragonfly Search Optimization (MDSO), Mean Square Error (MSE)
DOI: 10.3233/JIFS-210441
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6589-6599, 2021
Authors: Yin, Tao | Mao, Xiaojuan | Wu, Xingtan | Ju, Hengrong | Ding, Weiping | Yang, Xibei
Article Type: Research Article
Abstract: Neighborhood classifier, a common classification method, is applied in pattern recognition and data mining. The neighborhood classifier mainly relies on the majority voting strategy to judge each category. This strategy only considers the number of samples in the neighborhood but ignores the distribution of samples, which leads to a decreased classification accuracy. To overcome the shortcomings and improve the classification performance, D-S evidence theory is applied to represent the evidence information support of other samples in the neighborhood, and the distance between samples in the neighborhood is taken into account. In this paper, a novel attribute reduction method of neighborhood …rough set with a dynamic updating strategy is developed. Different from the traditional heuristic algorithm, the termination threshold of the proposed reduction algorithm is dynamically optimized. Therefore, when the attribute significance is not monotonic, this method can retrieve a better value, in contrast to the traditional method. Moreover, a new classification approach based on D-S evidence theory is proposed. Compared with the classical neighborhood classifier, this method considers the distribution of samples in the neighborhood, and evidence theory is applied to describe the closeness between samples. Finally, datasets from the UCI database are used to indicate that the improved reduction can achieve a lower neighborhood decision error rate than classical heuristic reduction. In addition, the improved classifier acquires higher classification performance in contrast to the traditional neighborhood classifier. This research provides a new direction for improving the accuracy of neighborhood classification. Show more
Keywords: Attribute reduction, D-S evidence theory, neighborhood classification, rough set
DOI: 10.3233/JIFS-210462
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6601-6613, 2021
Authors: Sekar, Aravindkumar | Perumal, Varalakshmi
Article Type: Research Article
Abstract: Automatic road crack detection is a prominent challenging task, in view of that, a novel approach is proposed using multi-tasking Faster-RCNN to detect and classify road cracks. In this present study, we have collected the road images (a dataset of 19300 images) from the Outer Ring Road of Chennai, Tamil Nadu, India. The collected road images were pre-processed using various conventional image processing techniques to identify the ground-truth label of the bounding boxes for the cracks. We present a novel multi-tasking Faster-RCNN based approach using the Global Average Pooling(GAP) and Region of Interest (RoI) Align techniques to detect the road …cracks. The RoI Align is used to avoid quantizing the stride. So that the information loss can be minimized and the bi-linear interpolation can be used to map the proposal to the input image. The resulting features from RoI Align are given as input to the GAP layer which drastically reduces the multi-dimension features into a single feature map. The output of the GAP layer is given to the fully connected layer for classification (softmax) and also to a regression model for predicting the crack location using a bounding box. F1-measure, precision, and recall were used to evaluate the results of classification and detection. The proposed model achieves the accuracy-97.97%, precision-99.12%, and recall-97.25% for classification using the MIT-CHN-ORR dataset. The experimental results show, that the proposed approach outperforms the other state-of-the-art methods. Show more
Keywords: Multi-tasking faster-RCNN, RoI align, road crack detection, road crack classification
DOI: 10.3233/JIFS-210475
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6615-6628, 2021
Authors: Li, Bin | He, Qiyu | Liu, Xiaopeng | Jiang, Yajun | Hu, Zhigang
Article Type: Research Article
Abstract: Person re-identification problem is a valuable computer vision task, which aims at matching pedestrian images of different cameras in a non-overlapping surveillance network. Existing metric learning based methods address this problem by learning a robust distance function. These methods learn a mapping subspace by forcing the distance of the positive pair much smaller than the negative pair by a strict constraint. The metric model is over-fitting to the training dataset. Due to drastic appearance variations, the handcrafted features are weak of representation for person re-identification. To address these problems, we propose a joint distance measure based approach, which learns a …Mahalanobis distance and a Euclidean distance with a novel feature jointly. The novel feature is represented with a dictionary representation based method which considers pedestrian images of different camera views with the same dictionary. The joint distance combine the Mahalanobis distance based on metric learning method with the Euclidean distance based on the novel feature to measure the similarity between matching pairs. Extensive experiments are conducted on the publicly available bench marking datasets VIPeR and CUHK01. The identification results show that the proposed method reaches a good performance than the comparison methods. Show more
Keywords: Person re-identification, metric learning, multi-distance, dictionary representation, Mahalanobis distance
DOI: 10.3233/JIFS-210505
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6629-6639, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl