Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Rai, Ashok Kumara | Senthilkumar, Radhaa; * | Aruputharaj, Kannanb
Affiliations: [a] Department of Information Technology, Faculty of Information and Communication Engineering, Anna University, Chennai, India | [b] School of Computer Science and Engineering, Vellore Institute of Technology (VIT) University, Vellore, India
Correspondence: [*] Corresponding author. Radha Senthilkumar, Department of Information Technology, Faculty of Information and Communication Engineering, Anna University, Chennai, India. E-mail: radhasenthilkumar@gmail.com.
Abstract: Face recognition is one of the best applications of computer recognition and recent smart house applications. Therefore, it draws considerable attention from researchers. Several face recognition algorithms have been proposed in the last decade, but these methods did not give the efficient outcome. Therefore, this work introduces a novel constructive training algorithm for smart face recognition in door locking applications. The proposed Framed Recurrent Neural Network with Mutated Dragonfly Search Optimization (FRNN-MDSO) Strategy is applied to face recognition application. The steady preparing system has been utilized where the training designs are adapted steadily and are divided into completely different modules. The facial feature process works on global and local features. After the feature extraction and selection process, employ the improved classifier followed by the Framed Recurrent Neural Network classification technique. Finally, the face image based on the feature library can be identified. The proposed Framed Recurrent Neural Network with Mutated Dragonfly Search Optimization starts with a single training pattern using Bidirectional Encoder Representations from Transformers (BERT) model. During network training, the Training Data (TD) decrease the Mean Square Error (MSE) while the matching process increases the algorithms generated which are trapped at the local minimum. The training data have been trained to increase the number of input forms (one after the other) until all the forms are selected and trained. An FRNN-MDSO based face recognition system is built, and face recognition is tested using hyperspectral Database parameters. The simulation results indicate that the proposed method acquires the associate grade optimum design of FRNN with MDSO methodology using the present constructive algorithm and prove the proposed FRNN-MDSO method’s effectiveness compared to the conventional architecture methods.
Keywords: Face recognition, Framed Recurrent Neural Network(FRNN), Mutated Dragonfly Search Optimization (MDSO), Mean Square Error (MSE)
DOI: 10.3233/JIFS-210441
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6589-6599, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl