Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Hao, Dong | Zhang, Runtong | Bai, Kaiyuan
Article Type: Research Article
Abstract: Online health communities (OHCs) have emerged as a significant platform for people communicating health information and self-healthcare management. In recent, the researches focusing on its performance measurement and the service quality evaluation have drawn intensive attention. Although some qualitative methods have made evaluation and analyses for the OHCs performance, the studies based on fuzzy multi-attribute decision making theory are rarely developed in the service quality evaluation of OHCs. In view of the complexity and uncertainty of evaluation mission, this paper develops an integrated evaluation approach of the OHC service quality based on the q-rung orthopair fuzzy linguistic aggregation operators. Firstly, …we propose the cross-entropy of q-rung orthopair fuzzy numbers, which is applied in solving the optimal weight of indicators by a linear programming model. Next, the q-rung orthopair fuzzy linguistic power average (q-ROFLPA) and q-rung orthopair fuzzy linguistic partitioned dual Maclaurin symmetric mean (q-ROFLPDMSM) operators are developed for aggregating the assessment information and ranking the OHCs. Based on the proposed aggregation operators, the evaluation indicator system and an evaluation framework are constructed to accomplish the service quality evaluation of OHCs. Finally, a practical evaluation case of OHCs is provided to demonstrate the reliability and advantages of the proposed approach. Show more
Keywords: Online health communities, q-rung orthopair fuzzy linguistic sets, partitioned dual Maclaurin symmetric mean, multi-attribute decision making, service quality evaluation
DOI: 10.3233/JIFS-211257
Citation: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 1907-1924, 2022
Authors: An, Qingxian | Zhang, Ruiyi | Shen, Yongchang
Article Type: Research Article
Abstract: Data envelopment analysis (DEA) is widely used to evaluate the performance of a group of homogeneous decision making units (DMUs). Considering the uncertainty, interval DEA has been introduced to fit into more situations. In this paper, an interval efficiency method based on slacks-based measure is proposed to solve the uncertain problems in DEA. Firstly, the maximum and minimum efficiency values of the evaluated DMU are calculated by the furthest and closest distance from the evaluated DMU to the projection points on the Pareto-efficient frontier, respectively. Then, the AHP method is used for the full ranking of DMUs. The paper uses …the pairwise comparison relationship between each pair of DMUs to construct the interval multiplicative preference relations (IMPRs) matrix. If the matrix does not meet the consistency condition, a method to obtain consistency IMPRs is introduced. According to the consistency judgment matrix, the full ranking of DMUs can be obtained. Finally, we apply our method to the performance evaluation of 12 tourist hotels in Taipei in 2019. Show more
Keywords: Performance measurement, data envelopment analysis, interval efficiency, interval multiplicative preference relations, full ranking
DOI: 10.3233/JIFS-211292
Citation: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 1925-1936, 2022
Authors: Seethappan, K. | Premalatha, K.
Article Type: Research Article
Abstract: Although there have been various researches in the detection of different figurative language, there is no single work in the automatic classification of euphemisms. Our primary work is to present a system for the automatic classification of euphemistic phrases in a document. In this research, a large dataset consisting of 100,000 sentences is collected from different resources for identifying euphemism or non-euphemism utterances. In this work, several approaches are focused to improve the euphemism classification: 1. A Combination of lexical n-gram features 2.Three Feature-weighting schemes 3.Deep learning classification algorithms. In this paper, four machine learning (J48, Random Forest, Multinomial Naïve …Bayes, and SVM) and three deep learning algorithms (Multilayer Perceptron, Convolutional Neural Network, and Long Short-Term Memory) are investigated with various combinations of features and feature weighting schemes to classify the sentences. According to our experiments, Convolutional Neural Network (CNN) achieves precision 95.43%, recall 95.06%, F-Score 95.25%, accuracy 95.26%, and Kappa 0.905 by using a combination of unigram and bigram features with TF-IDF feature weighting scheme in the classification of euphemism. These results of experiments show CNN with a strong combination of unigram and bigram features set with TF-IDF feature weighting scheme outperforms another six classification algorithms in detecting the euphemisms in our dataset. Show more
Keywords: Euphemism, TF-IDF, n-gram, Support Vector Machine, CNN
DOI: 10.3233/JIFS-211295
Citation: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 1937-1948, 2022
Authors: Jan, Atif | Khan, Gul Muhammad
Article Type: Research Article
Abstract: Identification/recognition of assault, fighting, shooting, and vandalism from video sequence using deep 2D and 3D convolutional neural networks (CNNs) is explored in this paper. Recent wave of extensive unrestricted urbanization has not only uplifted the standard of living, but has also threatened the safety of a common man leading to an extraordinary rise in crime rate. Although Closed-circuit television (CCTV) footage provides a monitoring framework, yet, it’s useless without an auto volume crime detection system. The system proposed in this work is an effort to eradicate volume crimes through accurate detection in real-time. Firstly, a fine-grained annotated dataset including instance …and activity information has been developed for real-world volume crimes. Secondly, a comparison between 3D CNN and 2D CNN network has been presented to identify the malicious event from the video sequence. This is carried out to explore the significance of spatial and temporal information present in the video for event recognition. It has been observed that 2D CNN even with lesser parameters achieved a promising classification accuracy of 91.2%and Area under the curve (AUC) of 95.2%on four classes. The system also reduces false alarm rate in comparison to state-of-the-art approaches. Show more
Keywords: Convolutional neural network, spatio-temporal features, malicious activity detection, deep learning
DOI: 10.3233/JIFS-211338
Citation: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 1949-1961, 2022
Authors: Shi, Maolin | Wang, Zihao | Xu, Lizhang
Article Type: Research Article
Abstract: Data clustering based on regression relationship is able to improve the validity and reliability of the engineering data mining results. Surrogate models are widely used to evaluate the regression relationship in the process of data clustering, but there is no single surrogate model that always performs the best for all the regression relationships. To solve this issue, a fuzzy clustering algorithm based on hybrid surrogate model is proposed in this work. The proposed algorithm is based on the framework of fuzzy c -means algorithm, in which the differences between the clusters are evaluated by the regression relationship instead of Euclidean …distance. Several surrogate models are simultaneously utilized to evaluate the regression relationship through a weighting scheme. The clustering objective function is designed based on the prediction errors of multiple surrogate models, and an alternating optimization method is proposed to minimize it to obtain the memberships of data and the weights of surrogate models. The synthetic datasets are used to test single surrogate model-based fuzzy clustering algorithms to choose the surrogate models used in the proposed algorithm. It is found that support vector regression-based and response surface-based fuzzy clustering algorithms show competitive clustering performance, so support vector regression and response surface are used to construct the hybrid surrogate model in the proposed algorithm. The experimental results of synthetic datasets and engineering datasets show that the proposed algorithm can provide more competitive clustering performance compared with single surrogate model-based fuzzy clustering algorithms for the datasets with regression relationships. Show more
Keywords: Data clustering, fuzzy clustering, regression relationship, hybrid surrogate model, engineering data
DOI: 10.3233/JIFS-211340
Citation: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 1963-1976, 2022
Authors: Wang, Heng | Ye, Xiang | Li, Yong
Article Type: Research Article
Abstract: Model pruning aims to reduce the parameter amount of deep neural networks while retaining the performance. Existing strategies often treat all layers equally and all layers simply share the same pruning rate. However, it is observed from our experiments that the redundancy degree differs from layer to layer. Based on this observation, this work proposes a pruning strategy depending on the layer-wise redundancy degree. Firstly, we define the redundancy degree for each layer by the norm and similarity redundancy of filters. Then a novel layer-wise strategy, Redundancy-dependent Filter Pruning (RedFiP), is proposed which prunes different proportion of filters at different …layers according to the defined redundancy degree. Since the redundancy analysis and experimental results of RedFiP show that deeper layers need fewer filters, a phase-wise strategy, Phased Filter Pruning (PFP), is proposed that divides the layers into three phases and layers in each phase share the same pruning rate. The phase-wise PFP allows the layer-wise RedFiP to be easily implemented in existing structures of deep neural networks. Experimental results show that when total parameters are pruned by 40%, RedFiP outperforms the state-of-the-art strategy FPGM-Mixed by 1.83% on CIFAR-100, and even slightly outperforms the non-pruned model by 0.11% on CIFAR-10. On ImageNet-1k, RedFiP (30%) and PFP (30%) outperform FPGM-Mixed (30%) by 1.3% and 0.8% with ResNet-18. Show more
Keywords: Filter pruning, redundancy, phase, importance
DOI: 10.3233/JIFS-211346
Citation: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 1977-1990, 2022
Authors: Chen, Yong | Zhang, Tianbao | Wang, Ruojun | Cai, Lei
Article Type: Research Article
Abstract: The failure of complex engineering systems is easy to lead to disastrous consequences. To prevent the failure, it is necessary to model complex engineering systems using probabilistic techniques with limited data which is a major feature of complex engineering systems. It is a good choice to perform such modeling using Bayesian network because of its advantages in probabilistic modeling. However, few Bayesian network structural learning algorithms are designed for complex engineering systems with limited data. Therefore, an algorithm for learning the Bayesian network structure of them should be developed. Based on the process of self-purification of water, a complex engineering …system is segmented into three components according to the degree of difficulty in solving them. And then a Bayesian network learning algorithm with three components (TC), including PC algorithm, MIK algorithm which is originated by the paper through combining Mutual Information and K2 algorithm, and the Hill-Climbing method, is developed, i.e. TC algorithm. To verify its effectiveness, TC algorithm, K2 algorithm, and Max-Min Hill-Climbing are respectively used to learn Alarm network with different sizes of samples. The results imply that TC algorithm has the best performance. Finally, TC algorithm is applied to study tank spill accidents with 220 samples. Show more
Keywords: Bayesian network structural learning, algorithm, complex engineering systems, failure probability
DOI: 10.3233/JIFS-211354
Citation: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 1991-2004, 2022
Authors: Bai, Shenshen | Li, Longjie | Chen, Xiaoyun
Article Type: Research Article
Abstract: The Dempster-Shafer evidence theory has been extensively used in various applications of information fusion owing to its capability in dealing with uncertain modeling and reasoning. However, when meeting highly conflicting evidence, the classical Dempster’s combination rule may give counter-intuitive results. To address this issue, we propose a new method in this work to fuse conflicting evidence. Firstly, a new evidence distance metric, named Belief Mover’s Distance, which is inspired by the Earth Mover’s Distance, is defined to measure the difference between two pieces of evidence. Subsequently, the credibility weight and distance weight of each piece of evidence are computed according …to the Belief Mover’s Distance. Then, the final weight of each piece of evidence is generated by unifying these two weights. Finally, the classical Dempster’s rule is employed to fuse the weighted average evidence. Several examples and applications are presented to analyze the performance of the proposed method. Experimental results manifest that the proposed method is remarkably effective in comparison with other methods. Show more
Keywords: Evidence theory, conflicting evidence, combination rule, evidence distance, Belief Mover’s Distance
DOI: 10.3233/JIFS-211397
Citation: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 2005-2021, 2022
Authors: Li, Fang | Zhang, Lihua | Wang, Xiao | Liu, Shihu
Article Type: Research Article
Abstract: In the existing high-order fuzzy logical relationship (FLR) based forecasting model, each FLR is used to describe the association between multiple premise observations and a consequent observation. Therefore, these FLRs concentrate on the one-step-ahead forecasting. In real applications, there exist another kind of association: the association between multiple premise observations and multiple consequent observations. For such association, the existing FLRs can’t express and ignored. To depict it, the high-order multi-point association FLR is raised in this study. The antecedent and consequent of a high-order multi-point association FLR are consisted of multiple observations. Thus, the proposed FLR reflects the influence of …multiple premise observations on the multiple consequent observations, and can be applied for multi-step-ahead forecasting with no cumulative errors. On the basis of high-order multi-point association FLR, the high-order multi-point trend association FLR is constructed, it describes the trend association in time series. By using these two new kinds of FLRs, a fuzzy time series based multi-step-ahead forecasting model is established. In this model, the multi-point (trend) association FLRs effective in capturing the associations of time series and improving forecasting accuracy. The benefits of the proposed FLRs and the superior performance of the established forecasting model are demonstrated through the experimental analysis. Show more
Keywords: Fuzzy time series, high-order multi-point association fuzzy logical relationship, high-order multi-point trend association fuzzy logical relationship, multi-step-ahead forecasting
DOI: 10.3233/JIFS-211405
Citation: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 2023-2039, 2022
Authors: Zhang, Zhaojun | Lu, Rui | Zhao, Minglong | Luan, Shengyang | Bu, Ming
Article Type: Research Article
Abstract: The research of path planning method based on genetic algorithm (GA) for the mobile robot has received much attention in recent years. GA, as one evolutionary computation model, mimics the process of natural evolution and genetics. The quality of the initial population plays an essential role in improving the performance of GA. However, when GA based on a random initialization method is applied to path planning problems, it will lead to the emergence of infeasible solutions and reduce the performance of the algorithm. A novel GA with a hybrid initialization method, termed NGA, is proposed to solve this problem in …this paper. In the initial population, NGA first randomly selects three free grids as intermediate nodes. Then, a part of the population uses a random initialization method to obtain the complete path. The other part of the population obtains the complete path using a greedy-related method. Finally, according to the actual situation, the redundant nodes or duplicate paths in the path are deleted to avoid the redundant paths. In addition, the deletion operation and the reverse operation are also introduced to the NGA iteration process to prevent the algorithm from falling into the local optimum. Simulation experiments are carried out with other algorithms to verify the effectiveness of the NGA. Simulation results show that NGA is superior to other algorithms in convergence accuracy, optimization ability, and success rate. Besides, NGA can generate the optimal feasible paths in complex environments. Show more
Keywords: Path planning, mobile robot, genetic algorithm, initial population
DOI: 10.3233/JIFS-211423
Citation: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 2041-2056, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl