Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Chen, Hongyu | Wang, Shengsheng
Article Type: Research Article
Abstract: Since the end of 2019, the COVID-19, which has swept across the world, has caused serious impacts on public health and economy. Although Reverse Transcription-Polymerase Chain Reaction (RT-PCR) is the gold standard for clinical diagnosis, it is very time-consuming and labor-intensive. At the same time, more and more people have doubted the sensitivity of RT-PCR. Therefore, Computed Tomography (CT) images are used as a substitute for RT-PCR. Powered by the research of the field of artificial intelligence, deep learning, which is a branch of machine learning, has made a great success on medical image segmentation. However, general full supervision methods …require pixel-level point-by-point annotations, which is very costly. In this paper, we put forward an image segmentation method based on weakly supervised learning for CT images of COVID-19, which can effectively segment the lung infection area and doesn’t require pixel-level labels. Our method is contrasted with another four weakly supervised learning methods in recent years, and the results have been significantly improved. Show more
Keywords: COVID-19, deep learning, weakly supervised learning, computed tomography, automated segmentation
DOI: 10.3233/JIFS-210569
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3265-3276, 2021
Authors: Sharma, Sudeep | Padhy, Prabin K.
Article Type: Research Article
Abstract: The combination of machine learning and artificial intelligent has already proved its potential in achieving remarkable results for modeling unknown systems. These techniques commonly use enough data samples to train and optimize their architectures. In the present era, with the availability of enough storage and computation power, the machine learning based data-driven system modeling approaches are getting popular as they do not interrupt the normal system operations and work solely on collected data. This work proposes a data-driven parametric neural network technique for modeling time-delayed systems, which is demanding but challenging area of research and comes under nonlinear optimization problem. …The key contribution of this work is the inclusion of an extended B-polynomial into the network structure for estimating time-delayed first and second order system models. These type of models extensively used for addressing simulations, predictions, controlling and monitoring related issues. Also, an adaptive learning based convergence of the proposed algorithm is proved with the help of the Lyapunov stability theory. The proposed algorithm compared with existing techniques on some well-known example problems. A real practical system plant is also included for validating the proposed concept. Show more
Keywords: Identification, estimation, modeling, adaptive learning, time delays, neural networks, lyapunov theory, intelligent systems
DOI: 10.3233/JIFS-210580
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3277-3288, 2021
Authors: Zhou, Qing | Peng, Wei | Tang, Dai
Article Type: Research Article
Abstract: In many countries, outpatients generally visit a major hospital without a referral from health professionals due to the shortage of family physicians. Not knowing at which medical specialty department to register, outpatients have to wait in long queues to consult receptionists. We propose to alleviate this situation via a computer system offering an automatic recommendation of departments (ARD) to outpatients, which identifies the appropriate medical department for outpatients according to their chief complaints. Besides, ARD systems can boost the emerging services of online hospital registration and online medical diagnosis, which require that the outpatients know the correct department first. ARD …is a typical problem of text classification. Nevertheless, off-the-shelf tools for text processing may not suit ARD, because the chief complaints of outpatients are generally brief and contain much noisy information. To solve this problem, we propose ARD-K, a deep learning framework incorporating external medical knowledge sources. We also propose a dual-attention mechanism to mitigate the interference of noisy words and knowledge entities. The performance of ARD-K is compared with some off-the-shelf techniques on a real-world dataset. The results demonstrate the effectiveness of ARD-K for the automatic recommendation of departments to outpatients. Show more
Keywords: Automatic recommendation of departments, medical knowledge graph, attention mechanism, clinical text classification
DOI: 10.3233/JIFS-210599
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3289-3299, 2021
Authors: Yan, Mian | Feng, Jianghong | Xu, Su Xiu
Article Type: Research Article
Abstract: In recent years, the problem of complex multi-attribute group decision-making (MAGDM) in uncertain environments has received increasing attention. In evaluating MAGDM problems, obtaining the objective attribute weights is very important. Considering the excellent performance of intuitive fuzzy linguistic sets in dealing with uncertain information, this paper introduces a new interval-valued intuitionistic pure linguistic entropy weight (IVIPLEW) method for determining attribute weights and evaluating MAGDM problems. The IVIPLEW method considers the cases of missing values, and uses the conventional interval-valued intuitionistic pure linguistic (IVIPL) expectations to supplement the missing values. This method of dealing with missing values not only considers the …expectations of experts, but also prevents fluctuations in linguistic variables from impacting the decision results. This paper establishes an analysis framework that allows the IVIPLEW method to be applied to MAGDM problems, and presents a practical case study that illustrates the practicality and effectiveness of IVIPLEW. The results are quite satisfactory. The effectiveness of the proposed method is demonstrated through a comparison with the IVIPL information aggregation method. Furthermore, the robustness of the IVIPLEW method is verified through a sensitivity analysis. The results presented in this paper show that the IVIPLEW method is applicable to a wide range of MAGDM problems. Show more
Keywords: Interval-valued intuitionistic pure linguistic, entropy weight method, group decision-making, attribute weights
DOI: 10.3233/JIFS-210609
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3301-3316, 2021
Authors: Cheng, Haodong | Han, Meng | Zhang, Ni | Wang, Le | Li, Xiaojuan
Article Type: Research Article
Abstract: The researcher proposed the concept of Top-K high-utility itemsets mining over data streams. Users directly specify the number K of high-utility itemsets they wish to obtain for mining with no need to set a minimum utility threshold. There exist some problems in current Top-K high-utility itemsets mining algorithms over data streams including the complex construction process of the storage structure, the inefficiency of threshold raising strategies and utility pruning strategies, and large scale of the search space, etc., which still can not meet the requirement of real-time processing over data streams with limited time and memory constraints. To solve this …problem, this paper proposes an efficient algorithm based on dataset projection for mining Top-K high-utility itemsets from a data stream. A data structure CIUDataListSW is also proposed, which stores the position of the item in the transaction to effectively obtain the initial projected dataset of the item. In order to improve the projection efficiency, this paper innovates a new reorganization technology for projected transactions in common batches to maintain the sort order of transactions in the process of dataset projection. Dual pruning strategy and transaction merging mechanism are also used to further reduce search space and dataset scanning costs. In addition, based on the proposed CUDH S W structure, an efficient threshold raising strategy CUD is used, and a new threshold raising strategy CUDCB is designed to further shorten the mining time. Experimental results show that the algorithm has great advantages in running time and memory consumption, and it is especially suitable for the mining of high-utility itemsets of dense datasets. Show more
Keywords: Itemset mining, utility mining, high utility itemsets, data streams, Top-K high-utility
DOI: 10.3233/JIFS-210610
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3317-3338, 2021
Authors: Singh, Deepika | Saha, Anju | Gosain, Anjana
Article Type: Research Article
Abstract: Imbalanced dataset classification is challenging because of the severely skewed class distribution. The traditional machine learning algorithms show degraded performance for these skewed datasets. However, there are additional characteristics of a classification dataset that are not only challenging for the traditional machine learning algorithms but also increase the difficulty when constructing a model for imbalanced datasets. Data complexity metrics identify these intrinsic characteristics, which cause substantial deterioration of the learning algorithms’ performance. Though many research efforts have been made to deal with class noise, none of them focused on imbalanced datasets coupled with other intrinsic factors. This paper presents a …novel hybrid pre-processing algorithm focusing on treating the class-label noise in the imbalanced dataset, which suffers from other intrinsic factors such as class overlapping, non-linear class boundaries, small disjuncts, and borderline examples. This algorithm uses the wCM complexity metric (proposed for imbalanced dataset) to identify noisy, borderline, and other difficult instances of the dataset and then intelligently handles these instances. Experiments on synthetic datasets and real-world datasets with different levels of imbalance, noise, small disjuncts, class overlapping, and borderline examples are conducted to check the effectiveness of the proposed algorithm. The experimental results show that the proposed algorithm offers an interesting alternative to popular state-of-the-art pre-processing algorithms for effectively handling imbalanced datasets along with noise and other difficulties. Show more
Keywords: Classification, class imbalance, data complexity, overlapping, bayes error, pre-processing, learning algorithms
DOI: 10.3233/JIFS-210624
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3339-3354, 2021
Authors: Zhu, Kun | Zhang, Shuai | Zhang, Wenyu | Zhang, Zhiqiang
Article Type: Research Article
Abstract: Accurate taxi demand forecasting is significant to estimate the change of demand to further make informed decisions. Although deep learning methods have been widely applied for taxi demand forecasting, they neglect the complexity of taxi demand data and the impact of event occurrences, making it hard to effectively model the taxi demand in highly dynamic areas (e.g., areas with frequent event occurrences). Therefore, to achieve accurate and stable taxi demand forecasting in highly dynamic areas, a novel hybrid deep learning model is proposed in this study. First, to reduce the complexity of taxi demand time series, the seasonal-trend decomposition procedures …based on loess is employed to decompose the time series into three simpler components (i.e., seasonal, trend, and remainder components). Then, different forecasting methods are adopted to handle different components to obtain robust forecasting results. Moreover, considering the instability and nonlinearity of the remainder component, this study proposed to fuse the event features (in particular, text data) to capture the unusual fluctuation patterns of remainder component and solve its extreme value problem. Finally, genetic algorithm is applied to determine the optimal weights for integrating the forecasting results of three components to obtain the final taxi demand. The experimental results demonstrate the better accuracy and reliability of the proposed model compared with other baseline forecasting models. Show more
Keywords: Taxi demand forecasting, deep learning, seasonal-trend decomposition procedures based on loess, data fusion, text data, genetic algorithm
DOI: 10.3233/JIFS-210657
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3355-3371, 2021
Authors: Riaz, Muhammad | Habib, Anam | Aslam, Muhammad
Article Type: Research Article
Abstract: A cubic bipolar fuzzy set (CBFS) is a new approach in computational intelligence and decision-making under uncertainty. This model is the generalization of bipolar fuzzy sets to deal with two-sided contrasting features which can describe the information with a bipolar fuzzy number and an interval-valued bipolar fuzzy number simultaneously. In this paper, the Dombi’s operations are analyzed for information aggregation of cubic bipolar fuzzy numbers (CBFNs). The Dombi’s operations carry the advantage of more pliability and reliability due to the existence of their operational parameters. Owing to the pliable nature of Dombi’s operators, this research work introduces new aggregation operators …named as cubic bipolar fuzzy Dombi weighted averaging (CBFDWA) operator and cubic bipolar fuzzy Dombi ordered weighted averaging (CBFDOWA) operator with ℙ -order and ℝ -order, respectively. Additionally, this paper presents some significant characteristics of suggested operators including, idempotency, boundedness and monotonicity. Moreover, a robust multi-criteria decision making (MCDM) technique is developed by using ℙ -CBFDWA and ℝ -CBFDWA operators. Based on the suggested operators a practical application is demonstrated towards MCDM under uncertainty. The comparison analysis of suggested Dombi’s operators with existing operators is also given to discuss the rationality, efficiency and applicability of these operators. Show more
Keywords: Cubic bipolar fuzzy sets, Dombi’s operations, cubic bipolar fuzzy Dombi weighted averaging operator, cubic bipolar fuzzy Dombi ordered weighted averaging operator, ℙ-order and ℝ-order operations, multi-criteria decision making
DOI: 10.3233/JIFS-210667
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3373-3393, 2021
Authors: Duan, Huiming | Huang, Jiangbo | Wang, Siqi | He, Chenglin
Article Type: Research Article
Abstract: The stock market is an important embodiment of a national economy and financial activities and has an important impact on a country, enterprises and individuals. Stock forecasting can allow investment institutions and investors to understand the trend of the stock market in advance, which is a challenging and meaningful study. First, through the impulse phenomenon of the stock market, this paper discusses the problem of stock price prediction with delay, and the impulse delay differential equation is established. Second, according to the difference between the differential and the difference, the nonlinear delay grey prediction model is established. Next, the model …parameters are estimated and the solving steps are obtained. The nonlinear parameters and delay time are optimized by the particle swarm optimization algorithm. Finally, the new model is applied to the prediction of the Shanghai stock market and the Shenzhen stock market closing indexes; the results show that the new model can effectively predict stock prices, which is much better than the existing four grey models and a time series model. Show more
Keywords: Stock price, impulse delay, grey model, forecasting
DOI: 10.3233/JIFS-210726
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3395-3413, 2021
Authors: Hu, Junying | Qian, Xiaofei | Cheng, Hao | Tan, Changchun | Liu, Xinbao
Article Type: Research Article
Abstract: Based on phase space reconstruction (PSR) and hybrid VNS-SVR model, a remaining useful life (RUL) prediction method for aircraft engines is proposed. The proposed hybrid model combines support vector regression (SVR), which has been successfully adopted for regression problems, with the variable neighborhood search (VNS). First, the phase space reconstruction is used to transform the selected one-dimensional performance sequences of aircraft engines into matrix forms, which increases the data information and improve the learning efficiency of the model effectively. Then, SVR is used to construct the prediction model. Meanwhile, a VNS algorithm is proposed to optimize the kernel parameters. Finally, …the hybrid model is used to RUL prediction of the aircraft engines. The experimental results show that the method has a good prediction performance. Show more
Keywords: Remaining useful life, support vector regression, phase space reconstruction, variable neighborhood search, aircraft engine
DOI: 10.3233/JIFS-210740
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3415-3428, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl