Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Chuanchao, Zhang
Article Type: Research Article
Abstract: In view of the characteristics with big data, high feature dimension, and dynamic for a large-scale intuitionistic fuzzy information systems, this paper integrates intuitionistic fuzzy rough sets and generalized dynamic sampling theory, proposes a generalized attribute reduction algorithm based on similarity relation of intuitionistic fuzzy rough sets and dynamic reduction. It uses dynamic reduction sampling theory to divide a big data set into small data sets and relative positive domain cardinality instead of dependency degree as decision-making condition, and obtains reduction attributes of big intuitionistic fuzzy decision information systems, and achieves the goal of extracting key features and fault diagnosis. …The innovation of this paper is that it integrates generalized dynamic reduction and intuitionistic fuzzy rough set, and solves the problem of big data set which cannot be solved by intuitionistic fuzzy rough set. Taking an actual data as an example, the scientificity, rationality and effectiveness of the algorithm are verified from the aspects of stability, diagnostic accuracy, optimization ability and time complexity. Compared with similar algorithms, the advantages of the proposed algorithm for big data processing are confirmed. Show more
Keywords: Intuitionistic fuzzy rough set, similarity relation, relative positive domain, generalized dynamic reduction, large fuzzy decision information system, attribute reduction
DOI: 10.3233/JIFS-200347
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7107-7122, 2020
Authors: Maryum, Ilsa | Nawaz, Waqas | Ud Din, Amad
Article Type: Research Article
Abstract: Non-uniformity in medical procedures, expensive medical treatments, and the shortage of medicines in different areas are health care problems in our country. This paper aims to resolve that problem by developing a web-based-application called Hospital Management Society (HMS) based on a novel Dynamic Optimized Fuzzy C-mean Clustering and Association Rule Mining (DOFCCARM). The purpose of HMS is to enhance the hospitals (and clinics) by regulating, overseeing and accrediting them to bring uniformity in health care facilities, to make the medical treatment cost effective, to find common diseases in a particular age and area, and to help government in identifying the …areas facing the shortage of licensed medicines. Therefore, HMS creates a single platform for both the doctors of central hospital (CH) and the doctors of member hospitals (MH). The CH provides clinical practice guidelines for various diseases. A team of doctors at CH evaluate the medical treatment provided by MH. If a hospital fails to maintain the standard then HMS blacklists such hospital. In our approach, we take a range of values to distinct successive partitions and generate a parallel membership function to make fuzzy sets of patients report, rather than single partitioning point. We determine the effectiveness of our approach through experiments on a dataset. The results revealed the most common age, symptoms and location for a particular disease and shortage of particular medicine in a specific area. Show more
Keywords: Fuzzy C-mean, association rule mining, hospital management society, intelligent system
DOI: 10.3233/JIFS-200349
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7123-7134, 2020
Authors: Li, Shugang | Zhu, Lirong | Zhu, Boyi | Wang, Ru | Zheng, Lingling | Yu, Zhaoxu | Lu, Hanyu
Article Type: Research Article
Abstract: 3D printing is the important part of the emerging industry, and the accurate prediction of technology hot spots (THS) in the 3D printing industry is crucial for the strategic technology planning. The patents of the THS are always in the minority and have outlier characteristics, so the existing single and rigid models cannot accurately and robustly predict the THS. In order to make up for the shortcomings of the existing research, this study proposes a model for robust composite attraction indicator (MRCAI), which avoids the impact of outlier patents on prediction accuracy depending on not only extracting the patent attraction …indicators (AIs) but also constructing the robust composite attraction indicator (CAI) according to the rough consensus of predicted results of CAIs with high generalization. Specifically, firstly, this study selects the patent AIs from the four dimensions of the attraction: technology group attraction, state attraction, enterprise attraction and inventor attraction. Secondly, in order to completely describe the attraction features of patent, AIs are directly and indirectly integrated into CAIs. Thirdly, we reduce the influence of outlier patents on prediction accuracy from two aspects: on the one hand, we initially select the CAIs with good generalization performance based on the prediction error fluctuation range. On the other hand, we build the robust CAIs by calculating the consensus of CAIs with high generalization performance based on the rough set. Fourthly, the 3D printing industry technology attention matrix is constructed to map the effective technology strategic planning based on predicted patent backward citation count by MRCAI in the short, medium and long term. Finally, the experimental results on 3D printing patent data show that MRCAI can effectively improve the efficiency in dealing with samples with outlier patents and has strong flexibility and robustness in predicting the THS in 3D printing industry. Show more
Keywords: Technology hot spots, outlier samples, robust CAI, 3D printing, technology attention matrix
DOI: 10.3233/JIFS-200404
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7135-7149, 2020
Authors: Lio, Waichon | Jia, Lifen
Article Type: Research Article
Abstract: Since the practical production is not continuously available and sometimes suffers unexpected breakdowns, this paper applies uncertainty theory to introducing an uncertain production risk process with breakdowns to handle the production problem with uncertain cycle times (consisting of uncertain on-times and uncertain off-times) and uncertain production amounts. The concept of shortage index of the uncertain production risk process with breakdowns is provided and some formulas for the calculation are given. Furthermore, the shortage time of the uncertain production risk process with breakdowns is proposed and its uncertainty distribution is obtained. Finally, some numerical examples are revealed.
Keywords: Production, risk process, uncertainty theory, uncertain renewal process
DOI: 10.3233/JIFS-200453
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7151-7160, 2020
Authors: Alberto Morales-Rosales, Luis | Algredo-Badillo, Ignacio | Lobato-Baez, Mariana | Hernández-Gracidas, Carlos | Rodríguez-Rangel, Héctor
Article Type: Research Article
Abstract: In this research, we implement an intelligent quantitative model to assess a specific qualitative intelligence scale in children between 5 and 8 years old, based on augmented reality and the well known WISC-IV test. The output of the model is a cognitive factor associated with the analogical reasoning level of the child, and the ulterior analysis of the evaluation measure is intended to serve as an aid for the teacher to discover problems related to the child’s ability to solve visual analogies. A quantitative approach to assess analogical reasoning is suitable to avoid ambiguous evaluations of qualitative results. Also, given …that the assessment employs a visual WISC subtest, it constitutes a non-verbal evaluation. Finally, the fact that the model is based on an intelligent approach guarantees that the assessment process is impartial, based on the quantitative scores obtained, instead of an interpretation of the results. The purpose of this work is to give evidence that a computer-aided adaption, employing augmented reality and a Fuzzy Petri Net, for the WISC test, will improve the teaching-learning process in children ranges from 5 to 8 years old. A case study is analyzed, where both the paper-based and the augmented reality versions are applied to five children with Spanish as their native tongue. We show the feasibility and potentiality of implementing the test in a multimedia version to provide teachers with a more reliable resource for the diagnosis and treatment of possible learning deficiencies in the child regarding disambiguation, non-verbality, and impartiality. Show more
Keywords: Intelligent quantitative model, analogical reasoning, WISC-IV test, augmented reality learning environment, computer-aided assessments
DOI: 10.3233/JIFS-200588
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7161-7175, 2020
Authors: Vijayabalaji, Srinivasan | Balaji, Parthasarathy | Ramesh, Adhimoolam
Article Type: Research Article
Abstract: The impetus of this paper is to broaden the structure of linguistic soft set (LSS) to a new domain namely sigmoid valued fuzzy soft set (SVFSS). Some operating laws on SVFSS are also provided. Using the complement concept on SVFSS we define maximum rejection. This maximum rejection paves a way for defining a new similarity measure on SVFSS termed as maximum likely ratio (MLR). A new MCGDM algorithm for SVFSS is proposed using MLR. An illustrative example of haze equipment problem on sigmoid valued fuzzy soft set setting is also given. A comparative analysis of our approach with the existing …approaches are also presented to justify our work. Show more
Keywords: Sigmoid valued fuzzy soft set, maximum rejection, maximum likely ratio, generalized maximum likely ratio, weighted maximum likely ratio
DOI: 10.3233/JIFS-200594
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7177-7187, 2020
Authors: Al-Zoubi, Ahmad | Tatas, Konstantinos | Kyriacou, Costas
Article Type: Research Article
Abstract: Heterogeneous systems featuring multiple kinds of processors are becoming increasingly attractive due to their high performance and energy savings over their homogeneous counterparts. With the OpenCL as a unified programming language providing program portability across different types of accelerators, finding the best task-to-device mapping will be the key to achieve such a high performance. We introduce in this work the design of a fuzzy logic classifier and the evaluation of its performance in classifying OpenCL workloads in a CPU-GPU-FPGA heterogeneous environment based on carefully analyzed kernel features. The classifier is designed as part of a scheduling scheme. Results demonstrate substantial …improvement in accuracy when compared to other classifiers such as the K-Nearest- Neighbor (KNN), Support-Vector-Machine (SVM), Random-Forest (RF), Naïve-Bayes (NB) and the Bayes-Network (BN) with low computational complexity, facilitating run-time operation. Show more
Keywords: Fuzzy Logic, Heterogeneous, Classification, OpenCL
DOI: 10.3233/JIFS-200616
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7189-7202, 2020
Authors: Ontiveros-Robles, Emanuel | Castillo, Oscar | Melin, Patricia
Article Type: Research Article
Abstract: In recent years, successful applications of singleton fuzzy inference systems have been made in a plethora of different kinds of problems, for example in the areas of control, digital image processing, time series prediction, fault detection and classification. However, there exists another relatively less explored approach, which is the use of non-singleton fuzzy inference systems. This approach offers an interesting way for handling uncertainty in complex problems by considering inputs with uncertainty, while the conventional Fuzzy Systems have their inputs with crisp values (singleton systems). Non-singleton systems have as inputs Type-1 membership functions, and this difference increases the complexity of …the fuzzification, but provides the systems with additional non-linearities and robustness. The main limitations of using a non-singleton fuzzy inference system is that it requires an additional computational overhead and are usually more difficult to apply in some problems. Based on these limitations, we propose in this work an approach for efficiently processing non-singleton fuzzy systems. To verify the advantages of the proposed approach we consider the case of general type-2 fuzzy systems with non-singleton inputs and their application in the classification area. The main contribution of the paper is the implementation of non-singleton General Type-2 Fuzzy Inference Systems for the classification task, aiming at analyzing its potential advantage in classification problems. In the present paper we propose that the use of non-singleton inputs in Type-2 Fuzzy Classifiers can improve the classification rate and based on the realized experiments we can observe that General Type-2 Fuzzy Classifiers, but with non-singleton fuzzification, obtain better results in comparison with respect to their singleton counterparts. Show more
Keywords: Type-2 fuzzy classifiers, Type-2 fuzzy logic, non-singleton
DOI: 10.3233/JIFS-200639
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7203-7215, 2020
Authors: Gao, Wenjing | Zhang, Wenjun | Gao, Haiyan | Zhu, Yonghua
Article Type: Research Article
Abstract: The increasing tendency of people expressing opinions via images online has motivated the development of automatic assessment of sentiment from visual contents. Based on the observation that visual sentiment is conveyed through many visual elements in images, we put forward to tackle visual sentiment analysis under multiple instance learning (MIL) formulation. We propose a deep multiple clustered instance learning formulation, under which a deep multiple clustered instance learning network (DMCILN) is constructed for visual sentiment analysis. Specifically, the input image is converted into a bag of instances through visual instance generation module, which is composed of a pre-trained convolutional neural …network (CNN) and two adaptation layers. Then, a fuzzy c-means routing algorithm is introduced for generating clustered instances as semantic mid-level representation to bridge the instance-to-bag gap. To explore the relationships between clustered instances and bags, we construct an attention based MIL pooling layer for representing bag features. A multi-head mechanism is integrated to form MIL ensembles, which enables to weigh the contribution of each clustered instance in different subspaces for generating more robust bag representation. Finally, we conduct extensive experiments on several datasets, and the experimental results verify the feasibility of our proposed approach for visual sentiment analysis. Show more
Keywords: Visual sentiment analysis, deep multiple clustered instance learning, fuzzy c-means routing, multi-head mechanism
DOI: 10.3233/JIFS-200675
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7217-7231, 2020
Authors: Yoseph, Fahed | Heikkilä, Markku
Article Type: Research Article
Abstract: Market Intelligence is knowledge extracted from numerous data sources, both internal and external, to provide a holistic view of the market and to support decision-making. Association Rules Mining provides powerful data mining techniques for identifying associations and co-occurrences in large databases. Market Basket Analysis (MBA) uses ARM to gain insights from heterogeneous consumer shopping patterns and examines the effects of marketing initiatives. As Artificial Intelligence (AI) more and more finds its way to marketing, it entails fundamental changes in the skills-set required by marketers. For MBA, AI provides important ways to improve both the outcomes of the market basket analysis …and the performance of the analysis process. In this study we demonstrate the effects of AI on MBA by our proposed new MBA model where results of computational intelligence are used in data preprocessing, in market segmentation and in finding market trends. We show with point-of-sale (POS) data of a small, local retailer that our proposed “Åbo algorithm” MBA model increases mining performance/intelligence and extract important marketing insights to assess both demand dynamics and product popularity trends. Additionally, the results show how, as related to the 80/20 percent rule, 78% of revenue is derived 16% of the product assortment. Show more
Keywords: Association rules mining, artificial intelligence, market intelligence, small and medium-sized retailer
DOI: 10.3233/JIFS-200707
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7233-7246, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl