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Visual sentiment analysis via deep multiple
clustered instance learning
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Abstract. The increasing tendency of people expressing opinions via images online has motivated the development of
automatic assessment of sentiment from visual contents. Based on the observation that visual sentiment is conveyed through
many visual elements in images, we put forward to tackle visual sentiment analysis under multiple instance learning (MIL)
formulation. We propose a deep multiple clustered instance learning formulation, under which a deep multiple clustered
instance learning network (DMCILN) is constructed for visual sentiment analysis. Specifically, the input image is converted
into a bag of instances through visual instance generation module, which is composed of a pre-trained convolutional neural
network (CNN) and two adaptation layers. Then, a fuzzy c-means routing algorithm is introduced for generating clustered
instances as semantic mid-level representation to bridge the instance-to-bag gap. To explore the relationships between
clustered instances and bags, we construct an attention based MIL pooling layer for representing bag features. A multi-head
mechanism is integrated to form MIL ensembles, which enables to weigh the contribution of each clustered instance in
different subspaces for generating more robust bag representation. Finally, we conduct extensive experiments on several
datasets, and the experimental results verify the feasibility of our proposed approach for visual sentiment analysis.
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1. Introduction

With the advent of social networks, people have
been willing to express their opinions online via post-
ing multimedia data. Among them, images are one
of the most convenient and intuitive mediums for
users to express ideas and convey moods. This gives
rise to a great demand for an efficient approach to
automatic visual semantics inference, which endeav-
ors to recognize the content of an image and infers
its high-level semantics. Image sentiment analysis is
an important research direction in the field of image
understanding, which studies the emotion response of
humans on the images. The approaches developed for
sentiment prediction on visual content, can be help-
ful to understand the users’ behaviors and attitudes.
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They will further benefit social media communication
and enable broad applications, e.g., affective image
retrieval [1], opinion mining [2], comment assistant
[3]. Therefore, how to infer the visual sentiment infor-
mation has attracted increasing research attention.

However, visual sentiment analysis is more chal-
lenging than conventional recognition tasks due to
the highly abstract nature of visual sentiment, which
is originated from the semantic gap between low-
level features and high-level semantics. Despite the
challenges, various kinds of approaches have been
proposed for visual sentiment analysis. Early studies
on this issue explored hand-crafted features related
to emotional expression, such as color, texture and
shape. Inspired by the psychology and art theories,
different groups of low-level features are manually
designed to study the emotional reactions towards
visual content [4]. However, the hand-crafted fea-
tures are mostly effective on small datasets containing
specific styles of images, such as artistic images.
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Fig. 1. Some example images highlighted with visual elements contributing more to the evocation of sentiment.

In recent years, deep learning based models enable
more robust feature representation than the tradi-
tional hand-crafted ones, making great changes in
the research field of visual sentiment analysis. Some
transfer learning based convolutional neural network
(CNN) models [5, 6] have been employed for learning
sentiment-level representation using training strate-
gies and achieved significant advances. However,
images in the same class of traditional cognitive-level
recognition tasks mainly contain the same type of
object. While in visual sentiment analysis, each class
includes images with much more diverse contents,
which results in large intra-class differences. It is dif-
ficult to discover discriminative features. To this end,
it is necessary to take more cues into consideration
for visual sentiment analysis. Many well-designed
deep learning models have been developed to predict
sentiment from images, which mainly fall into three
branches according to the strategies they focused on.
One branch is fusing textual information to visual
sentiment analysis [7–9]. These studies focus on
utilizing rich complementary information behind tex-
tual modality. Although, these approaches achieve
improvement in visual sentiment analysis, they are
insufficient to handle images without user-generated
captions. Others attempt to bridge the semantic
gap by learning mid-level feature representation of
sentiment-related visual concepts [10–12]. However,
most of them rely on pre-defined visual concepts,
which may fail in tackling complex visual scenes
since the same object may convey different sen-
timent information in different visual contexts. In
addition, some researchers pay attention to the uti-
lization of local information for sentiment analysis
through discovering affective regions [13, 14]. How-
ever, an affective region is hard to define, and thus the
detected regions may be different from real affective
regions. Besides, the contextual information, which
also reserves the characteristics of affective informa-
tion, is underutilized in most existing local regions
based methods.

In fact, the sentiment information in an image is
delivered by multiple visual elements. Some visual

elements contributing more to the evocation of sen-
timent are identified as affective local regions such
as the visual elements highlighted with red bound-
ing boxes in Fig. 1. Based on this observation, we
convert the visual sentiment analysis into a multiple
instance learning (MIL) problem. MIL is accom-
plished in handling the complex data in the form
that each bag is associated with multiple instances.
It can tackle problems through key instance selection
and instance-to-bag relationships exploration. This
enables a joint method combining the advantages of
both mid-level representation learning and affective
region discovery for tackling visual sentiment analy-
sis. In details, the input image can be modeled as a bag
consisting of multiple visual instances as mid-level
representation. For sentiment classification, the bag
can be re-represented by aggregating the instances
based on their contributions to sentiment conveyance
through a MIL pooling function.

To achieve this, we propose a deep multiple clus-
tered instance learning network (DMCILN), which
mainly contains three modules. A CNN model is
first constructed to generate feature vectors for mul-
tiple visual instances from the input image and
transform visual sentiment analysis into a MIL prob-
lem. Then, to bridge the semantic gap, we generate
clustered instances by aggregating visual instances
through a fuzzy c-means routing algorithm. Finally,
a multi-head attention based MIL pooling layer is
employed to determine the contribution of each
clustered visual instances to sentiment evocation in
different subspaces, based on which bag representa-
tion is produced for final sentiment classification.

Our main contributions to this field are summarized
as follows.

First, according to the characteristics of visual sen-
timent conveyance, we investigate the problem of
visual sentiment analysis by regarding it as a MIL
problem. To achieve this, we propose an effective
deep multiple clustered instance learning network
(DMCILN), which can predict visual sentiment
through key instance selection and instance-to-bag
exploration. In this way, our method can brigde the
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semantic gap and perceive affective regions. Various
experiments have been conducted on several datasets
to verify its effectiveness.

Second, within DMCILN, we design a fuzzy
c-means routing algorithm to generate clustered
instances through a joint optimization of feature
representation learning and clustering. Without pre-
definition of mid-level concepts, our method can
generate effective mid-level features in a weakly
supervised way to reduce the research space of
instance-to-bag relationships.

Third, a multi-head attention mechanism inspired
MIL pooling function is constructed to produce
discriminative bag representation by weighing the
contribution of features to sentiment evocation. The
automatic discovery of affective regions is realized
by calculating the attentive weights of each local
mid-level feature in different subspaces.

The remainders of this paper are organized as fol-
lows. Related works are reviewed in Section 2. Our
approach to visual sentiment analysis is elaborated
in Section 3. The experimental setup and analysis of
the results are represented in Section 4. We finally
conclude this work in Section 5.

2. Related work

2.1. Visual sentiment analysis

Learning a discriminative feature representation
is crucial to visual sentiment analysis. Early works
on visual sentiment analysis focused on design-
ing a combination of low-level features inspired by
psychology or art theories, color composition and
SIFT-based shape descriptor included [15]. How-
ever, the problem of “semantic gap” cannot be
well-solved by hand-crafted features. To tackle this,
more advanced mid-level representation has been
designed for visual sentiment analysis. SentiBank
[10] and DeepSentiBank [11] were constructed
to detect the existence of sentiment-related visual
concepts (Adjectives Noun Pairs, ANPs) in the
images as semantic representation. Similarly, Sen-
tribute defined the mid-level representation based on
scene-based attributes and eigenface for sentiment
prediction [12].

For images, features extracted from non-emotional
regions may generate classification noise. Rao et al.
[16] employed MIL to determine dominant visual ele-
ments for emotion evocation from segmented images
in a weakly supervised way. Then, object detection

based approaches were utilized to generate region
proposals containing semantic visual objects which
may evoke emotion. Sun et al. [13] selected affec-
tive regions by ranking each region proposal based
on its objectness scores. Rao et al. [17] proposed a
feature pyramid network combined with region pro-
posal network to generate multi-level representation
for multiple local regions. However, crisp region pro-
posals tend to find foreground objects in an image
which may neglect the contextual or global infor-
mation. To make up this limitation, She et al. [18]
detected soft sentiment map by class activation map-
ping in a weakly supervised manner. Other researcher
preferred soft regions discovered by attention mech-
anism based deep models [19].

Some researches consider both visual feature
learning and affective region discovery to enhance
the performance. For example, Wu et al. used atten-
tion mechanism to discover features of the region of
interest under the guidance of visual attributes [20].
Different from existing methods in the literature that
rely on pre-defined visual concepts, our model learns
mid-level representation under weakly supervised
MIL formulation with only sentiment-level labels. As
for affective region discovery, the above mentioned
methods produce either crisp regions proposal or
attentive features over the global feature map. In con-
trast, our proposed DMCILN weighs the contribution
of each clustered instance to sentiment prediction,
which can certainly reduce the research space.

2.2. Multiple instance learning

2.2.1. Multiple instance learning with neural
network

In the early researches on MIL, instances are
mostly precomputed by certain feature extraction
algorithms, which are then classified by specific
instance-level or bag-level classifiers. Attracted by
the capability of automatically representing func-
tions and learning features, some researchers begin
to approach MIL problems using neural network.
Multiple instance neural network is constructed to
learn instance representation and estimate instance
probabilities. Different pooling operators are then
adopted to calculate bag probability upon all instance
probabilities like log-sum-exp operator [21] and max
pooling operator [22]. Wang et al. [23] confirmed that
realizing MIL with fully-connected neural network
can be beneficial to bag-level prediction.

With the raise of deep learning, many researches
have made efforts in combining MIL with deep neural
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models. Ilse et al. [24] provided a general procedure
for MIL and parameterized all transformations using
neural network. They also proposed a permutation-
invariant aggregation operator, the weights of which
were obtained through training an attention mecha-
nism. Lin et al. then leveraged attention based deep
multiple instance learning for fashion outfit recom-
mendation [25]. In this paper, we also leverage the
attention-based MIL pooling function [24] for captur-
ing the affective local regions across multiple inputs.
The novelty of our model lies in that a multi-head
mechanism is introduced to form MIL ensembles
by exploring various instance-to-bag relationships in
different subspaces, which is more robust for discov-
ering key instances.

2.2.2. Clustering based multiple instance
learning

It is believed that the multiple instance represen-
tation follows some patterns that can contribute to
discriminate bags. Therefore, some researches uti-
lize unsupervised algorithms like clustering to find
the inherent structure of a dataset. Zhou et al. [26]
introduced constructive clustering ensemble (CCE)
to encode the bag by a binary feature vector indi-
cating that whether a bag has an instance in one
cluster or not. However, CCE considers only the
presence of the cluster member, which might be prob-
lematic for the MIL problems encoding threshold or
count-based assumptions. Then, Xu et al. [27] put
forward the multiple clustered instance learning for-
mulation (MCIL) by embedding clustering concept
to distinguish multiple cancer subtypes. They first
classified the segmented regions into different caner
subtypes and then predicted the bag upon instance-
level prediction. Based on the structural similarity of
the problems, we also integrate clustering algorithm
to uncover the mid-level feature structure for visual
sentiment analysis. Different from them, DMCILN
parameterizes all the functions in clustering based
MIL with deep neural network, which is more adap-
tive to bag-level representation.

3. Approach

3.1. Deep multiple clustered instance learning

As the sentiment-related elements often lie in local
regions in the images, we represent each image as
many local features and assume that each local feature
contributes to sentiment evocation in some degree.

This treatment allows us to cast visual sentiment
analysis as a MIL problem. Specifically, we fol-
low the generalized MI assumption where positive
bags are unable to be identified by a single instance
but by the distribution of all instances. Under this
formulation, the whole image conveying certain sen-
timent is regarded as a bag consisting many local
features called instances. To further bridge semantic
gap, we propose the concept of clustered instances
generated from aggregating instances as mid-level
representation. In this way, we can predict visual
sentiment by exploring the relationships between
clustered instances and bags. To realize it, a DMCILN
is constructed, where all the functions are parameter-
ized in one deep neural network. Hence, we called our
solution to visual sentiment analysis as deep multiple
clustered instance learning.

3.1.1. MIL formulation
In this section, we give a brief introduction to the

generalized MIL assumption and the procedures of
tackling MIL with neural network. Besides, we focus
on MIL pooling functions, which serve as the build-
ing blocks of our proposed DMCILN. In the classical
binary supervised learning problems, one aims at
finding a function that predicts a category yi for an
input sample Xi modeled as xi. In the case of MIL
problems, there are multiple instances {xi1, . . . , xiN}
that exhibit neither dependency nor ordering among
each other in a bag Xi labeled as yi. MIL is prefer-
able to the analysis of multimedia data which has the
multiple instance structure. For example, an image
can be segmented into multiple local regions, which
are then represented by a set of feature vectors derived
from each region. As implied in [24], how to design
a symmetric function for modeling the bag probabil-
ity S (Xi) is a core issue for solving MIL problems,
which should be in the following form:

S (Xi) = g

(∑
σ

f (Xi)

)
(1)

where f (·) and g (·) denote suitable transformation
functions. There are mainly two utilities of transfor-
mation functions, called instance-level approach and
embedding-level approach respectively. In this paper,
we only focus on the embedding-level approach,
which is preferable in terms of the bag-level clas-
sification performance compared to instance-level
approach [23]. The embedding-level approach maps
the jth instance to feature representation xij via func-
tion f (·). Then the bag embedding h (Xi) is generated
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from the aggregation of instance representation
through a permutation-invariant pooling function
σ (·). Finally, the class probability is obtained via
function g (·) over bag embedding.

For maximum pooling operator,

h (Xi) = max
j=1,...,N

{
xij
}

(2)

For mean pooling operator,

h (Xi) = 1

N

N∑
j=1

xij (3)

These fixed MIL pooling operators have a clear
disadvantage, namely, they are pre-defined and non-
trainable. Hence, one flexible and adaptive MIL
pooling is proposed to achieve better results by
adjusting to a specific task, i.e., attention-based
MIL pooling [24]. The attention based MIL pooling
averages the weighted instances where weights are
learned by training the neural network.

For attention-based pooling operators,

h (Xi) =
N∑

j=1

aijxij (4)

aij =
exp

{
WTtanh

(
VxT

ij

)}
∑K

k=1 exp
{

WTtanh
(
VxT

ik

)} (5)

3.1.2. DMCIL formulation on visual sentiment
analysis

In this paper, we approach visual sentiment anal-
ysis mainly by addressing two issues: the modeling
of visual elements and the exploration of how visual
elements contribute to the evocation of visual sen-
timent. To this end, visual sentiment analysis is
modeled as a generalized multiple instance learn-
ing problem. Under generalized MIL assumption,
each input image is in a form of a bag that con-
tains a set of visual instances. For visual sentiment
analysis, the goal is to predict the bag-level cate-
gorization by modeling the instances and exploring
the interaction between visual instances and bags. In
details, a permutation-invariant MIL pooling func-
tion is utilized to realize the transformation from
instance space to bag space, by which various rela-
tionships between visual instances and sentiment are
excavated. Specifically, the ith image is denoted as a
bag Xi; the jth image patch sampled from an image
corresponds to a visual instance representation xij .
The bag-level label of the bag Xi is defined as yi.

The feature representation of a bag is obtained by the
weighted-sum of the transformed instance as Equa-
tion (6), where aij denotes the contribution of the jth
visual instance representation xij to the bag embed-
ding h (Xi).

h (Xi) =
N∑

j=1

aijxij (6)

However, it is complicated to explore the relation-
ships between visual instances and the corresponding
sentiment as the features of visual instances generated
by CNN model are locally not semantically sampled.
As the visual entities serve as the basic semantic units
of an image, one good way is to model the mid-level
representation with the feature vector of a specific
visual entity. Traditional MIL method is not capable
of obtaining such semantic mid-level representation
without instance-level labels.

To tackle this, we embed the concept of cluster-
ing into the MIL setting and propose deep multiple
clustered instance learning which assumes that there
is implicit semantic information between instances
and bags that can be captured by clustering simi-
lar patches. Particularly, as illustrated in Equation
(7), the instances of all the bags are clustered into
K groups through function p (·) and the center
representation of the kth group is regarded as clus-
tered instance representation vik. By this way, the
mid-level representation is obtained, and then MIL
pooling σ (·) is performed to explore the interaction
between clustered instances and sentiment and aggre-
gate mid-level representation. In this way, each bag
is re-represented by one feature vector h (Xi) so that
single-instance classifiers can be used to distinguish
different classes of bags.

vik = p (xi1, . . . , xiN) (7)

h (Xi) =
∑
σ

aikvik (8)

The details of clustering function p (·) and obtain-
ing bag embedding h (Xi) are stated in the following
sections. The major differences among classical
supervised learning, MIL and MCIL are illustrated
as Fig. 2. In this paper we parameterize the trans-
formation f (·), p (·) and g (·) as well as the pooling
function σ (·) using deep neural networks for more
flexibility and end-to-end optimization.
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Fig. 2. Distinct problem formulations and learning goals among classical supervised learning, MIL, and MCIL.

Fig. 3. The framework of our proposed DMCILN for visual sentiment analysis.

3.2. The architecture of DMCILN

In order to realize visual sentiment analysis under
the formulation of DMCIL, we propose a deep
multiple clustered instance learning network. Our
proposed DMCILN can bridge the semantic gap by
learning a set of mid-level representation in a weakly
supervised way, over which affective regions can be
discovered to improve the performance of visual sen-
timent analysis. Figure 3 demonstrates the framework
of our proposed DMCILN, which consists of four
parts: visual instance generation, fuzzy c-means rout-
ing, MIL pooling and sentiment classification.

Visual instance generation part is a specific-
designed CNN model built to extract a set of feature
maps from the holistic image information. By adding
two adaption layers, the pre-trained CNN can be bet-
ter adapted to model multiple instances. We regard
one image as a bag and the concatenation of feature
maps across all the channels as multiple instances.
By this way, visual sentiment analysis can be trans-
formed into a MIL problem.

For reducing the gap between instances and
bags, we design a fuzzy c-means based dynamic
routing layer to generate clustered instances.
Different from traditional clustering based MIL
methods, we introduce fuzzy c-means into deep
neural network to generate clustered instances by
jointly optimizing feature representation learning
of instances and clustering in an end-to-end man-
ner. The clustered instances are capable of keeping
the major semantic features of instances in a
robust way.

In MIL pooling and sentiment classification
part, the bag representation is generated from all
the clustered instance representation through an
attention-based MIL pooling function. We innova-
tively embed the multi-head mechanism into MIL
pooling layer to form ensembles. MIL ensembles
can explore various combinations of visual elements
for generating a specific bag in different subspaces.
Finally, a sentiment classification layer is built on
top of the bag representation for visual sentiment
prediction.



W. Gao et al. / Visual sentiment analysis via deep multiple clustered instance learning 7223

Fig. 4. The architecture of visual instance generation module.

The details of these four parts are discussed in Sec-
tion 3.2.1, Section 3.2.2, Section 3.2.3 and Section
3.2.4, respectively.

3.2.1. Visual instance generation
The deep multiple clustered instance learning

assumption in visual sentiment analysis assumes
that an image can be decomposed into many visual
instances. Thus, each image can be represented as a
multi-instance bag. The first step towards visual sen-
timent analysis under the framework of the DMCIL
is multiple instance modelling, which aims to trans-
form each image into a multi-instance bag. Since MIL
problems assume that there is neither dependency
nor ordering relationship among all the instances in
a bag, we propose to utilize convolutional neural net-
work for extracting local features representing each
instances. In this section, we describe the genera-
tion of visual instances from images by exploiting
the architecture of convolutional neural network as
shown in Fig. 4.

To map an input image Xi into a bag of instances{
xij

}
, we design a CNN model f (·) to extract a

collection of feature maps xi representing instances
as shown in Equations (9) and (10). To guarantee
the quality of the learned instance representation, the
pre-trained model weights on ImageNet dataset are
employed to initialize our CNN model. However, the
original task of image classification treats each image
as one instance, which mixes the visual information
corresponding to different visual entities and brings
difficulty in adapting to learning multiple instance
representation. Hence, in this paper, we first extract
feature representation from the input image on the
basis of a pre-trained CNN, which is obtained by
removing the last two convolutional layers and the
following pooling and FC layers of VGGNet [28].
Then, two adaptation layers are added on top of the
pre-trained CNN to better adapt to model multiple
instances [29]. Two adaptation layers both contain

512 convolutional filters of size 3× 3 and are fol-
lowed by a ReLU [30] activation function and a
dropout layer.

xi = f (Xi) (9)

xi =
[
xi1, . . . , xij, . . . , xiN

]
, xij ∈ R

D (10)

The feature vectors generated at the bottom of the
CNN model are regarded as the overview of visual
appearance. Specifically, the final layer generates fea-
ture maps in size of 14× 14× 512. We follow [31] to
generate the representation for each instance by con-
catenating feature values at the same location across
different channels of the feature map. By this way,
each of the 14× 14 feature vector with dimension of
D = 512 can be treated as one instance representation
of the input image. Here, each convolutional feature
map corresponds to one specific local region in the
input image and thus can be utilized as an instance.

3.2.2. Clustered instance generation
The feature maps generated from CNN model are

scanned channel-wise to produce the so-called visual
instances. By this way, an image is modeled with
multiple instances. However, the visual instances
generated from CNN model fail to be semantically
meaningful since an instance corresponds to only a
small part of local region in the input image. To fur-
ther bridge the instance and bag feature space, our
target is to learn an effective mid-level representation
which can be served as semantic visual elements.

As we all know, the probabilistic based clustering
algorithms (e.g. K-means) are efficient in discovering
hidden visual patterns and keeping the major features
of similar patches by producing cluster centroids. To
this end, we attempt to utilize clustering for main-
taining the important information of visual instances.
However, introducing the traditional unsupervised
clustering to generate mid-level representation in
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DMCIL formulation may confront with some prob-
lems. To name a few, the data allocation of each
cluster is done in a crisp manner, and thus the qual-
ity of mid-level representation relies highly on the
clustering performance, which is lack of robustness.
Besides, they are incapable of jointly optimizing
feature representation learning of instances and clus-
tering in an end-to-end manner.

To tackle these challenges, a fuzzy c-means routing
algorithm is proposed to obtain clustered instances,
where the connection between low-level instances
and mid-level representation are determined based
on fuzzy c-means clustering. Fuzzy c-means rout-
ing algorithm works in two aspects: first, we utilize
a soft data allocation strategy for generating more
robust features, which relies less on the clustering per-
formance; second, it supports feature representation
learning by training the network end-to-end.

We first briefly review the basic fuzzy c-means
algorithm and realize it by a dynamic routing
approach [32]. Given a set of feature vectors of
instances in an image {xi1, . . . , xiN}, the number of
clustered instances K, and fuzzification parameter
θ(θ > 1), the feature vectors of clustered instance
are identified using fuzzy c-means algorithm by
optimizing the following objective function, where
function d (·) computes the distance between each
instance and one cluster center using Euclidean dis-
tance |xij − v2

ik| and the φij,k represents the fuzzy
membership indicating the degree that the jth sample
belongs to the kth cluster:

L (�, v) =
N∑

j=1

K∑
k=1

(
φij,k

)θ d
(
xij, vik

)
(11)

Traditional fuzzy c-means iteratively updates
fuzzy membership φij,k and cluster center vik with
a random initial estimate of cluster centers and
terminates when objective loss is below a speci-
fied tolerance. In this paper, we introduce a routing
process to realize fuzzy c-means algorithm in the
end-to-end network. The fuzzy c-means routing is
a routing process between instances and clustered
instances, which iteratively updates the representa-
tion of clustered instance by aggregating the instance
features. Firstly, the instance space is transformed
into clustered instance space by a transformation
matrix Wij,k [33]. The initial K clustered instances
are set by a weighted sum of transformed instances
as Equation (12). Then, we iteratively determine the
contribution of each instance to cluster centers and

update the representation of clustered center.

v0
ik =

1

K

K∑
k=1

Wij,kxij (12)

Particularly, we compute the fuzzy membership
φij,k of the jth transformed instance belonging to
the kth cluster. The representation of cluster cen-
ters is updated by evaluating the influence of the
jth component on the kth cluster center with their
fuzzy membership φij,k in each iteration. The larger
the fuzzy membership φij,k is, the higher impact of
the jth instances have on the kth clustered instance.
By aggregating the transformed instance based on
their fuzzy memberships, the clustered instances are
capable of keeping the major semantic features of
instances in a robust way. The whole procedures are
summarized on algorithm 1.

ALGORITHM 1: Fuzzy c-means based dynamic routing

Input: the collection of visual instances
{

xij

}
, and

iteration time r

Initialize v0
ik
← 1

K

n∑
i=1

Wij,kxij

for r iteration do
for all j and k do

φij,k ← d(Wij,kxij ,vk)1/1−θ∑K

c=1
d(Wij,kxij ,vc)1/1−θ

for all k do

vr
ik
←
∑N

j=1
φθ

ij,k
Wij,kxij∑N

j=1
φθ

ij,k

end
for all k do

vik ← ReLU (vik)
end
Output: the collection of clustered instances {vik}

Through fuzzy c-means routing, we obtain K cen-
troids in the clustered instance space. Each clustered
instance can be regarded as a mid-level representa-
tion obtained from aggregating local features, which
reflects the affective information to a certain degree.
The final clustered instances are obtained after ReLU
activation.

3.2.3. MIL pooling layer
Given all the clustered instances, the next step is

to generate bag representation for sentiment classi-
fication. Our DMCIL formulation assumes that the
sentiment is conveyed through the interaction among
collections of visual instances in the image. All the
clustered instances are generated from aggregating
local features, which exhibits neither dependency nor
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ordering among each other. Some clustered instances
evoking stronger sentiment than others are identified
as key clustered instances. To explore how various
combinations of clustered instances form a specific
sentiment-level bag, we construct an attention based
MIL pooling layer to transform the clustered instance
space to bag space. Specifically, the attention-based
MIL pooling layer can be expressed as a weighted
sum pooling over clustered instances where each
instance weight aik is determined by the attention
mechanism. The function for generating bag repre-
sentation h (Xi) from clustered instance {vik} can be
expressed as Equation (13).

h (Xi) =
K∑

k=1

aikvik (13)

The clustered instance weight aik is a scalar
describing the contribution of the kth clustered
instance to its bag representation h (xi). Based on
these weights, all the clustered instances {vik} are
aggregated into bag representation in a weighted-sum
pooling fashion. The clustered instance weights, are
determined using Equation (14) as [24]:

aik =
exp

{
WTtanh

(
VvT

ik

)}
∑K

k=1 exp
{

WTtanh
(
VvT

ik

)} (14)

However, based on the evocation mechanism of
visual sentiment, there might be various combina-
tions of visual elements for generating a specific
bag, among which the key instances may vary. Since
there is no criterion available for judging which
kind of combination result is the best for generating
bag representation, a possible solution is to produce
many different combinations and then combine their
results. This practice can be regarded as one kind of
MIL ensemble strategies which are known to be much
more robust for prediction than one MIL function.
Therefore, we propose to design MIL ensembles, the
goal of which is obtaining a strong bag represen-
tation from a set of individual learners to improve
classification performance.

To obtain MIL ensembles for the exploration of
various clustered instances-to-bag relationships, we
train an ensemble of multiple instance pooling lay-
ers, where multiple attention maps are created to
select key clustered instances in different aspects. In
particular, we project the clustered instance represen-
tation into M lower-dimensional subspaces, for each
of which the above-mentioned attention function is
performed as shown in the Equation (15). Each atten-

tive weight am
ik represents the importance of the kth

clustered instance to bag representation computed in
the mth subspace.

am
ik =

exp
{(

Wm
2

)T tanh
(
Wm

1 vT
ik

)}
∑K

k=1 exp
{(

Wm
2

)T tanh
(
Wm

1 vT
ik

)} (15)

When fusing the output of each subspace, we
consider two fusion operators for producing the
integrated bag representation: average fusion and
concatenation fusion. The average fusion is oper-
ated on multiple attention maps in different subspaces
to obtain the final attentive feature map as shown
in Equation (16). While the concatenation fusion
computes the attended bag representation in each sub-
spaces and concatenates them to obtain the integrated
representation. Both two operations can explore the
various transformation of clustered instances to bag
representation by integrating the results of all the
subspaces.

aik = 1

M

M∑
m=1

am
ik (16)

3.2.4. Sentiment classification layer
After obtaining bag representation from the

weighted aggregation of clustered instance, the multi-
instance learning problem is converted into single
instance learning, which can be tackled by a senti-
ment classification layer. In DMCIL, the sentiment
classification layer is set to a fully-connected layer
with non-linear activation function so that the bag
representation is transferred to a vector dc with length
of C, where C is the number of sentiment categories.
In visual sentiment analysis, the sentiment categories
can be either positive or negative.

dc = tanh (Wch (Xi)+ bc) (17)

Then the probability distribution pc over the senti-
ment categories is computed using softmax function
as Equation (18), where dC

c denotes the value of the
cth category in dc:

pc =
exp

(
dC

c

)
∑C

k=1 exp
(
dC

k

) (18)

To train the whole DMCILN, a loss function L for
guaranteeing sentiment classification results of the
input image is defined as follows. In this work, we
use the cross-entropy error between gold sentiment
distribution p

g
C and predicted sentiment distribution
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pC as the loss function:

L = −
C∑

c=1

p
g
C · log (pC) (19)

4. Experiment

4.1. Experiment settings

4.1.1. Dataset
We evaluate our proposed method on 4 public

datasets, including Flickr and Instagram(FI) [34],
Flickr [35], EmotionROI [36] and Twitter [5].

Flickr and Instagram (FI) is a well-labeled affec-
tive dataset crawled from Flickr and Instagram, which
is collected by querying with eight emotion categories
as keywords i.e., anger, amusement, awe, content-
ment, disgust, excitement, fear, sadness. The crawled
images are further labeled by AMT workers. We
reserve the labeled images receiving at least three
agreements which are totally 23,308.

Flickr is constructed from the images provided by
[35]. The images in the dataset are labeled with sen-
timent labels via crowd-sourcing. There are totally
60,745 images labeled with positive or negative.

Emotion ROI consists of 6 emotion categories
corresponding with Ekman’s 6 basic emotions (anger,
disgust, joy, fear, sadness and surprise), with 330
images per category. The total number of images in
this dataset is 1980.

Twitter I is built from those tweets containing
images. It contains 1269 images totally, which are
labeled with sentiment labels by AMT workers. We
reserve those images for which at least three AMT
workers give the same sentiment label.

Twitter II contains 603 images collected from
the Twitter website. The ground-truth labels are
given by AMT workers, and 470 samples are labeled
positive.

For binary sentiment classification, multi-emotion
labels are mapped into two categories: positive and
negative. For dataset FI, we divided the eight emo-
tion into binary sentiment categories. The labels of
amusement, contentment, excitement, and awe are
mapped to positive category, and images identified as
sadness, anger, fear, and disgust are labeled as neg-
ative. For the six categories in EmotionROI, images
with labels of anger, disgust, fear, and sadness are
labeled as negative, and those with joy and surprise
are positive.

4.1.2. Baseline models
To demonstrate the effectiveness of our proposed

DMCILN for visual sentiment analysis, we evaluate
our model against the following baselines including
methods based on hand-crafted features, mid-level
representation, transfer learning, affective regions.

For methods using hand-crafted features, we com-
pare with the principle-of-art features proposed
in Zhao et al. [4]. For mid-level representation
based approaches, we utilize SentiBank [10] and
pre-trained DeepSentiBank [11] to discover ANP
concepts as feature vectors. SentiBank exploits 1200
dimensional features detected by a concept detec-
tor library. While the pre-trained DeepSentiBank
is adopted to extract features followed by a fully-
connected layer for sentiment classification. For
transfer learning based deep models, the fully-
connected features are extracted from the VGGNet
trained on ImageNet and are classified by LIBSVM
for visual sentiment classification. We also evaluate
the results of VGGNet with16 layers, which adopts
the pre-trained weights on ImageNet dataset and is
fine-tuned on the experimental datasets. A progres-
sive CNN model proposed in You et al. [5] is also
compared with our method. We fine-tune the model
in the noisy labeled dataset with VGGNet architecture
for visual sentiment analysis. For methods utilizing
affective regions, we use Sun’s method [13] to select
top-1 crisp region from off-the-shelf tools and com-
bine the holistic features with the local features. In
addition, we design a variant of our model called
DMILN to show the feasibility of the generation of
clustered instances by fuzzy c-means routing. This
network is composed of only visual instance gener-
ation, multi-head attention-based MIL pooling and
sentiment classification.

4.1.3. Implementation details
In this section, we describe how our proposed

DMCILN is trained for visual sentiment analysis.
For data augmentation, we apply random horizon-
tal flips to the original images and randomly crop
into a 224× 224 sub-image to get more images, fol-
lowed by a normalization process. Following transfer
learning, the pre-trained layers of the CNN model
in visual instance generation are initialized with the
weights trained on ImageNet dataset. The output of
the conv4 3 layer is utilized as the input of the follow-
ing adaption layers. Particularly, we only compute
the gradients of the first iteration in fuzzy c-means
routing to make sure the effectiveness of the itera-
tive process. During training, the SGD optimizer is
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Table 1
Sentiment classification accuracy (%) on three datasets, including FI, Flickr, EmotionROI and Twitter.

The best performances of all models are represented in bold

Methods Datasets
FI Flickr EmotionROI Twitter I Twitter II

Zhao et al. [4]
����

����
75.24 67.92 67.51

SentiBank [10]
����

����
66.18 66.63 65.93

DeepSenti Bank [11] 61.54 70.16 70.11 71.25 70.23

VGG16 70.64 73.14 72.25 75.49 72.61

Fine-tuned VGG16 83.05 78.14 77.02 76.75 76.99

You et al. [5] 75.34 75.67 73.58 76.36 77.64

Sun et al. [13]
����

79.85
����

81.06 80.84

DMILN 82.45 78.35 77.69 77.63 77.01

DMCILN 85.12 81.83 80.53 80.80 80.12

adopted with the mini-batch size set to 10, and the
learning rate for pre-trained convolutional layers and
the remaining parts are set as 0.00001, 0.0001 respec-
tively. The total iterations are 20 epochs, while the
learning rate drops by a factor of 10 every 10 epochs.
The FI dataset is split randomly into 80% for train-
ing, 5% for validation and 15% for testing. For Flickr
dataset, we randomly sample 12606 images and split
it into 90% training set and 10% for testing set. The
rest of the datasets are all randomly split into 80% for
training and 20% for testing.

4.2. Experiment results

4.2.1. Comparison with the baselines
We compare the classification performance of our

model with the above-mentioned baselines. We set
the fuzzy parameter θ = 1.5, cluster number K = 12,
multi-head number M = 2 and concatenation fusion as
the default setting. Table 1 reports the performance of
the baselines along with our proposed DMCILN. The
hand-crafted features and SentiBank perform worse
than deep neural models, which verifies the feasibility
of deep representation.

As we can see, compared to SentiBank and
DeepSentiBank, which detects the pre-defined visual
concepts as mid-level representation, our model
makes an obvious improvement in all datasets. The
reasons lie in two aspects. First, our model learns
mid-level representation in a weakly supervised way
rather than detecting concrete visual concepts, which
is proven more effective and robust for semantic gap
reduction. Second, our model weighs the importance
of local features instead of treating them equally,

which can suppress noisy patches. Our method also
shows an advantage over You’s method and fine-
tuned VGGNet, which demonstrates that our model
is capable of learning more discriminative features
under the multiple clustered instance learning formu-
lation than the transfer learning based CNN models
with different training strategies. As for affective
region based method, our method outperforms Sun’s
method in Flickr while lags behind them in small-
scale datasets Twitter I and Twitter II. This indicates
that our architecture need more training images to
achieve more satisfied results. The advantages of our
model lies in that it can learn discriminative represen-
tation for visual sentiment analysis in an end-to-end
weakly supervised way rather than using off-the-shelf
tools. Besides, it takes no trouble to fuse localized and
holistic representations. Finally, we compare with
the variant DMILN without the generation of mid-
level representation. From Table 1 we can see that
the performance of DMILN is similar to that of fine-
tuned VGGNet in that DMILN directly attend to each
instance without the valid bridge between low-level
features and high level semantics. While DMCILN
achieves the improvement of about 3% accuracy
over DMILN and fine-tuned VGGNet. This proves
the effectiveness of the fuzzy c-means routing mod-
ule by introducing mid-level representation between
instances and bags.

4.2.2. Comparison of different pooling functions
Under the multiple clustered instance learning

assumption, each image is viewed as a bag, and its
local features are regarded as clustered instances.
The DMCILN generates bag representation by
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aggregating the clustered instances through a kind
of pooling function, which converts multi-instance
learning problem to single-instance classification that
can be solved by a classification layer. In this case, the
choice of pooling function is an important decision.
In order to verify the effectiveness of our proposed
multi-head attention based MIL pooling function, we
compare the following types of pooling functions
both theoretically and experimentally.

1) Max-pooling function simply takes the largest
value in the feature dimension across all the instance
representation. 2) Average-pooling function assigns
an equal weight to each instance and takes an aver-
age of the feature representation of all instances. The
first two pooling functions are pre-defined and non-
trainable. 3) Attention based pooling function [24]
learns the weights of each instance representation
by optimizing the network, which is a flexible and
adaptive MIL pooling for achieving better results by
adjusting to a task and its dataset. 4) Average oper-
ation based multi-head attention pooling function
(average+multi-head) computes the attentive weights
in two subspaces and then takes an average of them
to obtain the final attentive weights. 5) Concatena-
tion operation based multi-head attention pooling
function (concatenation+multi-head) generates the
attended bag embedding in two subspaces and then
concatenates them to get the final bag representation.

To evaluate the effect of different MIL pooling
functions on visual sentiment analysis, we propose
three variants of our model with different pooling
functions. The results are shown in Fig. 5. We can
see that the average-pooling obtains the lowest accu-
racy on both FI and Flickr datasets as it considers all
the clustered instances equally. Max-pooling function
performs a little better than average pooling function.
This can be explained by that this mechanism focuses
on the most important information rather than treating
them equally.

The performance of both attention-based pool-
ing function and multi-head attention-based pooling
functions are comparatively more satisfying than
the fixed pooling functions, i.e., max-pooling and
average-pooling. This demonstrates that the weights
computed by training the network allow dynamically
selecting features for more effective sentiment clas-
sification.

As for the strategy of MIL ensembles, the multi-
head mechanism in attention-based pooling gives a
0.2–0.5 percent improvement compared to attention
based pooling function. From this, we may draw the
conclusion that the bag representation obtained by

Fig. 5. Accuracy and macro-f1 of different pooling functions on
the testing set of the FI and Flickr datasets.

aggregating attentive weights in different subspaces
is more robust than single MIL pooling layer. Besides,
Fig. 4 demonstrates the comparison of two fusion
operations, which illustrates that concatenation is the
most effective way since it retains all the information.

4.2.3. Comparison of different K values
As stated above, our model generates clustered

instances as semantic mid-level representation by
grouping the instances into K clusters using fuzzy
c-means routing. In terms of unsupervised cluster-
ing, the value of K will have impact on the quality
of the learned mid-level representation. Under the
multiple clustered instance learning formulation, we
treat each clustered instances as the aggregation of
local features depend on their similarity. To this end,
we assume that the value of K can be regarded as
the average number of semantic visual entities in the
input images. If K is set higher, there will be less
impact on reducing semantic gap. Otherwise, if K is
set lower, it is difficult for clustering to give a good



W. Gao et al. / Visual sentiment analysis via deep multiple clustered instance learning 7229

Fig. 6. Accuracy and macro-f1 of different K values on the testing
set of the FI and Flickr datasets.

performance as well as some visual concepts may
be neglected. Therefore, we report the classification
accuracy and macro-f1 of our model with different K
values on two large scale datasets, i.e., FI and Flickr.
Intuitively, we set the possible values of K to 8, 12,
16 and 20. The results are shown in Fig. 6. From
Fig. 6, we can see that both accuracy and f1-macro
first increase when the value of K increases and then
decreases. The peak value reaches for accuracy and
f1-macro when K = 12.

4.2.4. Visualization of fuzzy c-means routing
In this section, we’d like to explore the seman-

tics of the clustered instances generated from fuzzy
c-means routing algorithm. Parts of the clustering
results are visualized to help us understand the poten-
tial meaning of mid-level representation generated
from DMCILN.

Fig. 7. The visualization of some key clustered instances gener-
ated from our DMCILN. The sample images are selected from FI
dataset.

Under the framework of deep multiple clustered
instance learning, the input image is modeled with
multiple visual instances by visual instance genera-
tion module. Thus, each instance corresponds to a
multi-channel feature vector sampled from a 14× 14
local region. According to the fuzzy c-means rout-
ing algorithm, each clustered instance is obtained by
weighted sum of all the instances, where the weight
is defined as the fuzzy membership of each instance
to the specific cluster. Inspired by the visualization
of visual attention, we visualize the weight matrixes
of all the fuzzy memberships. Specifically, the size
of weight matrix for a cluster is 14× 14 while the
original image is 224× 224. Hence, we upsample
the weight matrix to the same size of the original
image by a factor of 16 and then filtered by gaussian
filter to generate heatmaps. One heatmap represents
the fuzzy memberships of all instances in one clus-
ter which can reflect the visualization of clustering
results. From the sample images shown in Fig. 6, we
can observe that, this kind of fuzzy clustering can cap-
ture the mid-level visual concepts by grouping similar
patches. For example, as shown in the first row of
Fig. 7, two visual concepts including “ship” and “sky”
from local regions are mainly aggregated as mid-level
representation after fuzzy clustering. This verifies the
assumption of our proposed DMCIL where mid-level
visual concepts can serve as semantic information
between instances and bags.
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5. Conclusions

In this paper, we present a deep multiple clus-
tered instance learning network, which models the
input image as a multi-instance bag and addresses
the visual sentiment analysis under the formulation of
deep multiple clustered instance learning. This end-
to-end deep neural network realizes visual sentiment
analysis by a joint work of semantic mid-level rep-
resentation learning and affective regions discovery.
In particular, a fuzzy c-means based routing algo-
rithm is designed to generate clustered instances,
which is able to learn both instance representation and
fuzzy clustering. Besides, we also introduce a multi-
head attention based MIL pooling layer for weighing
the contribution of each feature representation over
mid-level representation in different subspaces. The
results of experiments on several datasets demon-
strate that the DMCIL formulation inside our model
has a distinct improvement in results over baseline
models when performing visual sentiment analysis.
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