Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 420.00Impact Factor 2024: 1.1
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand.
Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
Authors: Korotyaev, Evgeni
Article Type: Research Article
Abstract: Asymptotic estimates at large time of the Green function to the wave equation with periodic coefficients are found. An estimate of the wave front is also obtained. It is shown that the spectral band (with number n=0,1,2,…) of the corresponding Hill operator ‘creates’ a wave having the front velocity cn < 1 . Estimates of cn in the terms of the gap lengths, the effective masses of the Hill operator are proved, both with fixed number n and their sums. Some extensions for more general cases (the Dirac operator with periodic coefficients, the Schrodinger operator with finite band …potentials etc.) are also obtained. Show more
DOI: 10.3233/ASY-1997-15101
Citation: Asymptotic Analysis, vol. 15, no. 1, pp. 1-24, 1997
Authors: Barucq, H. | Hanouzet, B.
Article Type: Research Article
Abstract: We develop an asymptotic study of Maxwell's system involving an absorbing boundary condition. First- and second-order systems are considered. In both cases, we prove that the solution converges towards a steady state depending on the geometrical properties of the obstacle. The asymptotic state involves the data of the problem.
Keywords: Maxwell's system, absorbing boundary conditions, asymptotic behaviour, electromagnetic waves
DOI: 10.3233/ASY-1997-15102
Citation: Asymptotic Analysis, vol. 15, no. 1, pp. 25-40, 1997
Authors: Berthier, Michel | Loray, Frank
Article Type: Research Article
DOI: 10.3233/ASY-1997-15103
Citation: Asymptotic Analysis, vol. 15, no. 1, pp. 41-54, 1997
Authors: Klopp, Frédéric
Article Type: Research Article
Abstract: Sous l'hypothèse V périodique, on étudie dans le cadre de la limite semi-classique (h→0), le spectre de l'opérateur Pt =−h2 Δ+V+tδV agissant sur L2 (Rn ), où t est une constante de couplage positive et δV est une fonction localisée au voisinage de m puits distincts de V. Pour ce faire, on ramène par équivalence unitaire l'étude de l'opérateur Pt à celle d'un noyau de Birman–Schwinger. Cette réduction nous permet alors de montrer l'existence de valeurs propres pour Pt quand |t| n'est pas trop petit (ceci dépendant de la dimension n). Puis on étudie le comportement de ces …valeurs propres en fonction de |t| et de la localisation des m puits de V que l'on a perturbé. Show more
Keywords: Opérateurs de Schrödinger, limite semi-classique, potentiels périodiques, localisation de fonctions propres
DOI: 10.3233/ASY-1997-15104
Citation: Asymptotic Analysis, vol. 15, no. 1, pp. 55-102, 1997
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl