Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 420.00Impact Factor 2024: 1.1
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand.
Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
Authors: Gasser, Ingenuin | Markowich, Peter A.
Article Type: Research Article
Abstract: We analyse the classical limit of the quantum hydrodynamic equations as the Planck constant tends to zero. The equations have the form of an Euler system with a constant pressure and a dispersive regularisation term, which (formally) tends to zero in the classical limit. The main tool of the analysis is the exploitation of a kinetic equation, which lies behind the quantum hydrodynamic system. The presented analysis can also be interpreted as an alternative approach to the geometrical optics (WKB)-analysis of the Schrödinger equation.
Keywords: Quantum hydrodynamics, Wigner transform, classical limit, WKB-asymptotics of the Schrödinger equation
DOI: 10.3233/ASY-1997-14201
Citation: Asymptotic Analysis, vol. 14, no. 2, pp. 97-116, 1997
Authors: Kondratiev, V.A. | Véron, L.
Article Type: Research Article
Abstract: We study the asymptotic behaviour of the solutions of the parabolic equation (1) ∂u/∂t−Lu+a(x)|u|q−1 u=0 or the elliptic equation (2) ∂2 u/∂t2 +Lu−a(x)|u|q−1 u=0 in Ω×(0,∞) when Ω is bounded, u satisfies the Neumann boundary condition in ∂Ω×(0,∞),L is a linear strongly elliptic operator in Ω,q is bigger than 1 and a(x)≥0. We also study the vanishing property of t$\mapsto $ u(x,t) when 0 < q < 1.
DOI: 10.3233/ASY-1997-14202
Citation: Asymptotic Analysis, vol. 14, no. 2, pp. 117-156, 1997
Authors: Burq, N.
Article Type: Research Article
Abstract: On généralise les résultats de C. Bardos, G. Lebeau et J. Rauch sur la contrôlabilité exacte de l'équation des ondes avec conditions de Dirichlet au cas où l'ouvert considéré est de classe C3 et les coefficients du Laplacien de classe C2 . On obtient, en utilisant des H-mesures ou mesures de défaut microlocales, des conditions nécessaires et des conditions suffisantes fortes pour la contrôlabilité exacte.
DOI: 10.3233/ASY-1997-14203
Citation: Asymptotic Analysis, vol. 14, no. 2, pp. 157-191, 1997
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl