Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 420.00Impact Factor 2024: 1.1
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand.
Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
Authors: Kozlov, V. A. | Maz'ya, V. G. | Movchan, A. B.
Article Type: Research Article
Abstract: We consider a mixed boundary value problem for the Laplace operator in a union of a three-dimensional domain and thin cylinders. A rigorous procedure is developed to derive the total asymptotic expansion. The asymptotic formulae for the first eigenvalue and corresponding eigenfunction have been obtained.
DOI: 10.3233/ASY-1994-8201
Citation: Asymptotic Analysis, vol. 8, no. 2, pp. 105-143, 1994
Authors: Galaktionov, Victor A. | Vazquez, Juan L.
Article Type: Research Article
Abstract: We investigate the asymptotic behaviour as t→∞ of the non-negative weak solution to the Cauchy problem for the equation of superslow diffusion ut =(e−1/u )xx for x∈R, t>0, with non-negative initial function u0 ∈L∞ (R)∩L1 (R), u0 $\not\equiv$ 0. We prove that asymptotic separation of variables takes place if we make the change of variables v=e−1/u and η=x/log t. The precise result says that as t→∞ tv(η log t,t)→½(a2 −η2 )+ , and the convergence is uniform in η∈R. The constant a>0 is exactly one half of the initial energy: a=½∫u0 (x)dx>0. This implies that u …evolves for large t towards a mesa-like profile of height 1/(log t) and width =2a log t. Show more
DOI: 10.3233/ASY-1994-8202
Citation: Asymptotic Analysis, vol. 8, no. 2, pp. 145-159, 1994
Authors: Quintela Estévez, P.
Article Type: Research Article
Abstract: An asymptotic method is presented to analyse perturbations of bifurcations of the solutions of nonlinear problems. The perturbations may result from imperfections, impurities or other inhomogeneities in the corresponding physical problem. Using a method of matched asymptotic expansions we obtain global representations of the solutions of the perturbed problem when the bifurcation solutions are known globally. Even if, in this paper, the asymptotic method is used to analyse the perturbed bifurcation in the von Kármán equations, the same analysis is also valid to study the perturbations in more general nonlinear problems.
DOI: 10.3233/ASY-1994-8203
Citation: Asymptotic Analysis, vol. 8, no. 2, pp. 161-184, 1994
Authors: Canalis-Durand, M.
Article Type: Research Article
Abstract: Nous nous intéressons à un problème d'équations différentielles singulièrement perturbées. Après avoir précisé la notion d'équation élémentaire sur C, nous étudions les solutions formelles de telles équations possédant certaines propriétés de régularité. Nous prouvons, par des majorations directes, le caractère Gevrey 1 de ces séries formelles. Nous obtenons alors par des techniques de sommation de séries divergentes, une nouvelle preuve de l'existence des solutions surstables d'une équation élémentaire. Ce texte est le développement de la note aux C. R. Acad. Sci. qui porte le titre: “Caractère Gevrey des solutions canard de l'équation de Van der Pol”.
DOI: 10.3233/ASY-1994-8204
Citation: Asymptotic Analysis, vol. 8, no. 2, pp. 185-216, 1994
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl