Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 420.00Impact Factor 2024: 1.1
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand.
Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
Authors: Ganguly, Debdip | Gupta, Diksha | Sreenadh, K.
Article Type: Research Article
Abstract: We study the existence and non-existence of positive solutions for the following class of nonlinear elliptic problems in the hyperbolic space − Δ B N u − λ u = a ( x ) u p − 1 + ε u 2 ∗ − 1 in B N , u ∈ H 1 ( B N ) , where B N …denotes the hyperbolic space, 2 < p < 2 ∗ : = 2 N N − 2 , if N ⩾ 3 ; 2 < p < + ∞ , if N = 2 , λ < ( N − 1 ) 2 4 , and 0 < a ∈ L ∞ ( B N ) . We first prove the existence of a positive radially symmetric ground-state solution for a ( x ) ≡ 1 . Next, we prove that for a ( x ) ⩾ 1 , there exists a ground-state solution for ε small. For proof, we employ “conformal change of metric” which allows us to transform the original equation into a singular equation in a ball in R N . Then by carefully analysing the energy level using blow-up arguments, we prove the existence of a ground-state solution. Finally, the case a ( x ) ⩽ 1 is considered where we first show that there is no ground-state solution, and prove the existence of a bound-state solution (high energy solution) for ε small. We employ variational arguments in the spirit of Bahri–Li to prove the existence of high energy-bound-state solutions in the hyperbolic space. Show more
Keywords: Hyperbolic space, hyperbolic bubbles, Palais–Smale decomposition, semilinear elliptic problem
DOI: 10.3233/ASY-241895
Citation: Asymptotic Analysis, vol. 138, no. 4, pp. 225-253, 2024
Authors: Chakrabortty, Amartya | Griso, Georges | Orlik, Julia
Article Type: Research Article
Abstract: This paper focuses on the simultaneous homogenization and dimension reduction of periodic composite plates within the framework of non-linear elasticity. The composite plate in its reference (undeformed) configuration consists of a periodic perforated plate made of stiff material with holes filled by a soft matrix material. The structure is clamped on a cylindrical part. Two cases of asymptotic analysis are considered: one without pre-strain and the other with matrix pre-strain. In both cases, the total elastic energy is in the von-Kármán (vK) regime (ε 5 ). A new splitting of the displacements is introduced to …analyze the asymptotic behavior. The displacements are decomposed using the Kirchhoff–Love (KL) plate displacement decomposition. The use of a re-scaling unfolding operator allows for deriving the asymptotic behavior of the Green St. Venant’s strain tensor in terms of displacements. The limit homogenized energy is shown to be of vK type with linear elastic cell problems, established using the Γ-convergence. Additionally, it is shown that for isotropic homogenized material, our limit vK plate is orthotropic. The derived results have practical applications in the design and analysis of composite structures. Show more
Keywords: Homogenization, dimension reduction, unfolding operators, Γ-convergence, non-linear elasticity, von-Kármán plate, pre-strain
DOI: 10.3233/ASY-241896
Citation: Asymptotic Analysis, vol. 138, no. 4, pp. 255-310, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl