Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Fu, Pengbin | Ma, Yuchen | Yang, Huirong
Article Type: Research Article
Abstract: The speaker diarization task pertains to the automated differentiation of speakers within an audio recording, while lacking any prior information regarding the speakers. The introduction of the self-attention mechanism in End-to-End Neural Speaker Diarization (EEND) has elegantly resolved the issue of overlapping speakers. The Transformer model equipped with self-attention mechanism has shown great potential in collecting global information, yielding remarkable outcomes in various tasks. However, the individual speaker characteristics are predominantly reflected in the contextual information, which conventional self-attention would not adequately address. In this study, we propose a hierarchical encoders model to augment the encoders’ acquisition of speaker information …in two distinct ways: (1) Constraining the perceptual field of the self-attentive mechanism with left-right windows or Gaussian weights to highlight contextual information; (2) Utilizing a pre-trained time-delay neural network based speaker embedding extractor to alleviate the shortcomings of speaker feature extraction ability. We evaluate the proposed methods on a simulated dataset of two speakers and a real conversation dataset. The model with the most favorable outcomes among the proposed enhancements achieves a diarization error rate of 7.74% on the simulated dataset and 21.92% on MagicData-RAMC after adaptation. These results compellingly demonstrate the efficacy of the proposed methods. Show more
Keywords: Speaker diarization, contextual information, Gaussian weight, constraint self-attention
DOI: 10.3233/JIFS-230249
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 9169-9180, 2023
Authors: Qin, Ying
Article Type: Research Article
Abstract: English language teaching varies with the universities and faculties for improving student knowledge through adaptability. In improving the adaptability features, multiple practices are blended based on previous outcomes. The outcomes are considered through the accumulated big data for leveraging student performance. This article introduces a Blended Model using Big Data Analytics (BM-BDA) to provide an upgraded teaching environment for different students. This study applied learning analytics and educational big data methods for the early prediction of students’ final academic performance in a blended model for English teaching. The model aims at rectifying the performance inaccuracies observed in the previous sessions …through the pursued teaching methods. Furthermore, the identification is pursued using teaching model classification and its results over students’ performance. The classification is pursued using conventional classifier learning based on different inaccuracies. The inaccuracy in teaching efficiency using the implied model is classified for different types of students for step-by-step model tuning. The tuning is performed by inheriting the successful implications from the other methods. This improves the inclusion and blending of the diverse method to a required level for teaching efficiency. The successful blending method is discarded from the classification process post the outcome verification. This requires intense data analysis using diverse student performance and implied teaching methods. Show more
Keywords: Big data, blended models, classification learning, English teaching
DOI: 10.3233/JIFS-230842
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 9181-9197, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl