Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Du, Kang | Fan, Ruguo | Xue, Hu | Wang, Yitong | Bao, Xuguang
Article Type: Research Article
Abstract: The mechanism of promoting cooperation in the public goods game has always been concerned by scholars. However, most of the existing studies are based on the premise that participants are self-interested. In order to explore why some sellers on e-commerce platforms voluntarily maintain the platform’s reputation, we incorporate heterogeneous social preferences of sellers into the spatial public goods game. We find that heterogeneous social preferences can enhance cooperation by improving collective rationality. Specifically, the altruistic preference of sellers can greatly reduce free-riding behavior, while the inequality aversion preference has a little inhibitory effect. Interestingly, when the benefit of maintaining the …platform’s reputation is relatively high, the reciprocal preference can inhibit cooperation, but it can promote cooperation when the benefit is relatively small. This is due to the existence of some loosely connected but stable cooperative or defective clusters of sellers in e-commerce platforms. Furthermore, we propose a dynamic punishment mechanism to punish free riders. We observe that the dynamic punishment mechanism is more effective than the static punishment mechanism in solving the second-order free-riding problem faced by punishers. Increasing the enhancement factor of public goods is identified as a fundamental approach to mitigating this problem. Show more
Keywords: E-commerce platform, altruism, inequality aversion, reciprocity, spatial public goods game
DOI: 10.3233/JIFS-232322
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 6453-6467, 2023
Authors: Thao, Le Quang | Diep, Nguyen Thi Bich | Bach, Ngo Chi | Linh, Le Khanh | Giang, Nguyen Do Hoang
Article Type: Research Article
Abstract: In this study, we introduce a new method to address the pressing issue of school violence using Artificial Intelligence (AI). School violence is a critical issue that affects the safety and well-being of students, teachers, and the school community as a whole. Violent behaviors, such as bullying, physical assaults, and weapon use, can have long-term effects on students’ psychological health and academic performance. To reduce these issues, we developed a lightweight Deep Learning model that can be integrated into a school’s surveillance camera system to quickly detect violent fighting behaviors for timely intervention by school staff. The proposed FightNet model …consists of three components: MobileNetV2 backbone, Feature Pyramid Network (FPN) neck, and Centernet Object as a Point (COaP) head. By optimizing the hyperparameters of the model to extract keypoints in image frames from the COCO dataset, we applied an LSTM model to determine the temporal dependence of actions and classify them as “fighting” or “normal” using the UBI-Fights dataset. The FightNet model achieved mAP@0.5 of 45.34% and mAP@0.95 of 55.89% in estimating keypoints, and 72.68% accuracy and 71.69% F1-score in predicting actions. Based on these results, we conclude that the proposed model can effectively address the issue of school violence. Show more
Keywords: School fighting violence, multi-keypoints, FightNet, light-weight model, LSTM
DOI: 10.3233/JIFS-232480
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 6469-6483, 2023
Authors: Javeed, M.D. | Nagaraju, Regonda | Chandrasekaran, Raja | Rajulu, Govinda | Tumuluru, Praveen | Ramesh, M. | Suman, Sanjay Kumar | Shrivastava, Rajeev
Article Type: Research Article
Abstract: The process of partitioning into different objects of an image is segmentation. In different major fields like face tracking, Satellite, Object Identification, Remote Sensing and majorly in medical field segmentation process is very important to find the different objects in the image. To investigate the functions and processes of human boy in radiology magnetic resonance imaging (MRI) will be used. MRI technique is using in many hospitals for the diagnosis purpose widely in finding the stage of a particular disease. In this paper, we proposed a new method for detecting the tumor with enhanced performance over traditional techniques such as …K-Means Clustering, fuzzy c means (FCM). Different research methods have been proposed by researchers to detect the tumor in brain. To classify normal and abnormal form of brain, a system for screening is discussed in this paper which is developed with a framework of artificial intelligence with deep learning probabilistic neural networks by focusing on hybrid clustering for segmentation on brain image and crystal contrast enhancement. Feature’s extraction and classification are included in the developing process. Performance in Simulation of proposed design has shown the superior results than the traditional methods. Show more
Keywords: Segmentation, brain tumor, probabilistic neural networks, feature extraction, classification
DOI: 10.3233/JIFS-232493
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 6485-6500, 2023
Authors: Zhan, Huawei | Pei, Xinyu | Zhang, Tianhao | Zhang, Linqing
Article Type: Research Article
Abstract: A flame detection algorithm based on the improved SSD (Single Shot Multibox Detector) is proposed in response to the issues with the limited detection distance, delayed reaction, and high false alarm rate of previous flame detection systems. First, the ResNet-50-SPD model was added to the original backbone network to improve the detection of low resolution and tiny objects. After that, incorporate feature fusion between layers to improve the bond between contexts. Before the feature entered the prediction, the impact of channel number reduction was eliminated using the adaptive module AAM. According to experimental findings, the modified SSD algorithm’s mAP value …on on the random division dataset and K-fold verification dataset reaches 87.89% and 89.63%, respectively, which is 3.97% and 5.17% higher than the original SSD, while the FPS remains at 64.9 f/s. It is helpful to improve the time of the fire alarm, find the ignition point in time, and better meet the actual engineering needs of fire monitoring. Show more
Keywords: Flame detection, SSD, ResNet-50-SPD, feature fusion, AAM
DOI: 10.3233/JIFS-232645
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 6501-6512, 2023
Authors: Zhang, Boqiang | Gao, Tianzhi | Chen, Yanbin | Jin, Xin | Feng, Tianpei | Chen, Xinming
Article Type: Research Article
Abstract: A large number of grain machinery and vehicle equipment are usually required in the raw grain storage phase, and these objects together form the path planning map environment for the unmanned grain transfer vehicle. After using LiDAR to build a map of the environment for path planning, these dense and cluttered obstacles tend to affect the path planning effect making the unmanned transfer vehicle create a crossing from the impenetrable dense obstacles. To address this problem, this paper firstly deals with obstacles by fusing the DBSCAN clustering algorithm and K-means clustering algorithm, clustering obstacles, and extracting the cluster centroid and …boundary points of each obstacle class to avoid the above situation. Secondly, the specific A* algorithm is improved, the search field way of the A* algorithm is optimized, and the optimized 5×5 field search way is used instead of the traditional 3×3 field search way of A* to improve the node search efficiency of the algorithm. Finally, the repulsion function of the artificial potential field algorithm is added to the A* heuristic function as a safety function to increase the obstacle avoidance capability of the A* algorithm. After verification, the improvement can operate better in the dense and cluttered obstacle environment. Show more
Keywords: Grain depot, food logistics, clustering algorithm, A* algorithm, artificial potential field, raster map
DOI: 10.3233/JIFS-232780
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 6513-6533, 2023
Authors: Xiaozhen, Zheng | Le, Xuong
Article Type: Research Article
Abstract: Carbon dioxide is produced during the manufacture of normal Portland cement; however, this gas may be minimized by utilizing ground granulated blast furnace slag (GGBFS ). When planning and constructing concrete buildings, compressive strength (f c ), a crucial component of concrete mixtures, is a need. It is essential to assess this GGBFS -blended concrete property precisely and consistently. The major objective of this research is to provide a practical approach for a comprehensive evaluation of machine learning algorithms in predicting the f c of concrete containing GGBFS . The research used the Equilibrium optimizer (EO ) …to enhance and accelerate the performance of the radial basis function (RBF ) network (REO ) and support vector regression (SVR ) (SEO ) analytical methodologies. The novelty of this work is particularly attributed to the application of the EO , the assessment of f c including GGBFS , the comparison with other studies, and the use of a huge dataset with several input components. The combined SEO and REO systems demonstrated proficient estimation abilities, as evidenced by coefficient of determination (R 2 ) values of 0.9946 and 0.9952 for the SEO ’s training and testing components and 0.9857 and 0.9914 for the REO , respectively. The research identifies the SVR optimized with the EO algorithm as the most successful system for predicting the f c of GGBFS concrete. This finding has practical implications for the construction industry, as it offers a reliable method for estimating concrete properties and optimizing concrete mixtures. Show more
Keywords: Compressive strength, ground granulated blast furnace slag, prediction, equilibrium optimizer, support vector regression
DOI: 10.3233/JIFS-233428
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 6535-6547, 2023
Authors: Umaamaheshvari, A. | Sivasankari, K. | Suguna, N. | Kshirsagar, Pravin R. | Tirth, Vineet | Rajaram, A.
Article Type: Research Article
Abstract: The optimization algorithms mimic the process of natural evolution. In watermarking, appropriate positions to insert the watermark is identified by the image that covers. These positions represent the populations of genetic algorithms. The major drawback in genetic algorithm are that it may get stuck-up at a local optimum while moving towards the best global solution and hence the result is poor when compared to other local optimization techniques. The proposed work based on Bandelet based biogeography firefly hybrid algorithms. The Number of pixels, Intensity of the pixel and contrast are considered for watermarking. The redundancy is reduced by Bandelet and …used to determine the best location to embed the information into an image both locally and globally. Results of these techniques are compared based on coefficient correlation, index structural similarity, and noise ratio from peak signal. Show more
Keywords: Biogeography firefly algorithm, genetic algorithm, optimization, peak signal to noise ratio
DOI: 10.3233/JIFS-224590
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 6549-6559, 2023
Authors: Birong, Zhang
Article Type: Research Article
Abstract: In this paper, a bi-objective mixed-integer linear programming model is constructed to manage the pharmaceutical supply chain of a hospital. The proposed model aims to concurrently reduce the overall cost of obtaining drugs from several vendors and choose the best suitable source. The suggested model takes into account supplier distance, inventory management, and multi-product and multi-period. The major assumptions of the proposed model are product storage for future periods of decreased demand and supplier capacity. The results indicate that the ideal approach can minimize hospital supply and pharmaceutical planning expenses. The Best-Worst and TOPSIS methods determine which pharmaceutical supplier should …be selected for future orders. The suggested model identifies human resource capability as an essential factor that might significantly affect the system’s total cost. The results of applying the model and the sensitivity analysis validate the efficacy and validity of the suggested mathematical model and solution strategy. Show more
Keywords: Optimization, pharma supply chain, uncertainty, robust programming
DOI: 10.3233/JIFS-230017
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 6561-6574, 2023
Authors: Arulselvan, G. | Rajaram, A.
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-231905
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 6575-6590, 2023
Authors: Xiao, Huimin | Gao, Xiaosong | Yang, Peng | Wei, Meng
Article Type: Research Article
Abstract: In the face of multi-attribute decision problems in complex situations, most traditional multi-attribute group decision methods are based on the assumption that the decision maker is perfectly rational, while in the face of complex decision problems, the decision maker usually has the psychological characteristics of limited rationality and may use more than one linguistic term to describe the decision information when expressing the decision information To this end, this paper selects probabilistic language term sets to describe complex preference information. First, to address the problem that the current probabilistic linguistic term set correlation coefficient cannot appropriately measure the degree of …correlation among probabilistic linguistic term sets, this paper proposes a new probabilistic linguistic term set correlation coefficient from three characteristic factors of probabilistic linguistic term sets: mean, variance, and length rate. To integrate the attribute index weights, probabilistic linguistic term set weighted mixed correlation coefficients are proposed. Second, this paper introduces the TODIM method, which can consider the psychological behavior of decision makers, and proposes a TODIM multi-attribute decision making method based on probabilistic linguistic term sets with mixed correlation coefficients. Finally, through an empirical analysis of four Internet listed companies in a new first-tier city in China, this study verifies the rationality and validity of the proposed method. The results show that the mixed correlation coefficient can comprehensively measure the correlation between probabilistic linguistic term sets, which provides an important method for future multi-attribute decision making problems. Show more
Keywords: Multi-attribute decision making, probabilistic linguistic term sets, mixed correlation coefficient, TODIM method
DOI: 10.3233/JIFS-232042
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 6591-6604, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl