Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Madhavi, S. | Santhosh, N.C. | Rajkumar, S. | Praveen, R.
Article Type: Research Article
Abstract: In Wireless Sensor Networks (WSNs), resource depletion attacks that focusses on the compromization of routing protocol layer is identified to facilitate a major influence over the network. These resource depletion attacks drain the batter power of the sensor nodes drastically with persistent network disruption. Several protocols were established for handling the impact of Denial of Service (DoS) attack, but majority of them was not able to handle it perfectly. In specific, thwarting resource depletion attack, a specific class of DoS attack was a herculean task. At this juncture, Multicriteria Decision Making Model (MCDM) is identified as the ideal candidate for …evaluating the impact introduced by each energy depletion compromised sensor nodes towards the process of cooperation into the network. In this paper, A Pythagorean Fuzzy Sets-based VIKOR and TOPSIS-based multi-criteria decision-making model (PFSVT-MCDM) is proposed for counteracting with the impacts of resource depletion attacks to improve Quality of Service (QoS) in the network. This PFSVT-MCDM used the merits of Pythagorean Fuzzy Sets information for handling uncertainty and vagueness of information exchanged in the network during the process of data routing. It utilized VIKOR and TOPSIS for exploring the trust of each sensor nodes through the exploration of possible dimensions that aids in detecting resource depletion attacks. The experimental results of PFSVT-MCDM confirmed better throughput of 21.29%, enhanced packet delivery fraction of 22.38%, minimized energy consumptions 18.92%, and reduced end-to-end delay of 21.84%, compared to the comparative resource depletion attack thwarting strategies used for evaluation. Show more
Keywords: Wireless sensor networks, resource depletion attacks, pythagorean fuzzy sets, TOPSIS (Technique For Order Performance By Similarity To Ideal Solution), quality of service, VIKOR (VlseKriterijumska Optimizacija Kompromisno Resenje)
DOI: 10.3233/JIFS-224141
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 6, pp. 9441-9459, 2023
Authors: Cao, Maojun | Hu, Yingda | Yue, Lizhu
Article Type: Research Article
Abstract: The uncertainty of weight makes the weight density between samples not fixed. Aiming at the problem that the existing CLIQUE clustering algorithm does not consider the weight of object features, which leads to low accuracy, an improved weighted method combined with the thought of posets is proposed. In addition, this method does not need accurate weight assignment, only the weight order can run efficiently. First, the weight order of object features is obtained, and then the partial order weight is applied to the original data to obtain weighted data with weights. Then the traditional CLIQUE algorithm is used to cluster …according to weighted data, and finally the partial order weighted CLIQUE model is obtained. Through the experiment of six groups of data, the results show that: under the given weight sequence constraints, the clustering quality of the weighted CLIQUE model is significantly higher than that of the unweighted model, and the clustering accuracy and other aspects are significantly improved. In this method model, weight information is effectively integrated into the algorithm when only the feature weight order is obtained, and the function of feature weight is fully played to enhance the robustness of clustering results. At the same time, the idea of poset can effectively integrate expert information, and the representation of the nearest neighbor elements in Hasse graph can show the effect intuitively. It is an effective improvement method of CLIQUE clustering algorithm. Show more
Keywords: Clustering, proposed, CLIQUE algorithm, feature weight, Hasse graph
DOI: 10.3233/JIFS-224214
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 6, pp. 9461-9473, 2023
Authors: Peng, Peng | Wu, Danping | Han, Fei-Chi | Huang, Li-Jun | Wei, Zhenlin | Wang, Jie | Jiang, Yizhang | Xia, Kaijian
Article Type: Research Article
Abstract: Currently, breast cancer is one of the most common cancers among women. To aid clinicians in diagnosis, lesion regions in mammography pictures can be segmented using an artificial intelligence system. This has significant clinical implications. Clustering algorithms, as unsupervised models, are widely used in medical image segmentation. However, due to the different sizes and shapes of lesions in mammography images and the low contrast between lesion areas and the surrounding pixels, it is difficult to use traditional unsupervised clustering methods for image segmentation. In this study, we try to apply the semisupervised fuzzy clustering algorithm to lesion segmentation in mammography …molybdenum target images and propose semisupervised fuzzy clustering based on the cluster centres of labelled samples (called SFCM_V, where V stands for cluster centre). The algorithm refers to the cluster centre of the labelled sample dataset during the clustering process and uses the information of the labelled samples to guide the unlabelled samples during clustering to improve the clustering performance. We compare the SFCM_V algorithm with the current popular semisupervised clustering algorithm and an unsupervised clustering algorithm and perform experiments on real patient mammogram images using DICE and IoU as evaluation metrics; SFCM_V has the highest evaluation metric coefficient. Experiments demonstrate that SFCM_V has higher segmentation accuracy not only for larger lesion regions, such as tumours, but also for smaller lesion regions, such as calcified spots, compared with existing clustering algorithms. Show more
Keywords: Medical image segmentation, semisupervised, fuzzy clustering algorithm, mammogram
DOI: 10.3233/JIFS-224458
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 6, pp. 9475-9493, 2023
Authors: Wang, Zeyuan | Cai, Qiang | Lu, Jianping | Wei, Guiwu
Article Type: Research Article
Abstract: With the development of globalization, companies from all over the world are now more closely connected, and they all play different roles in the industry in which they are located. There are more and more companies in a complete supply chain, which can greatly influence the stability of the supply chain, presents certain challenges. Therefore, choosing suppliers with sustainable development capabilities, especially in the event of interruption, can ensure the stability of the entire supply chain, thereby enhancing the company’s image and competitive advantage in a large-scale competition. The sustainable supplier selection is a classical multiple attribute group decision making …(MAGDM) issues. In this study, the dual probabilistic linguistic EDAS (DPL-EDAS) method is built based on the traditional EDAS method and dual probabilistic linguistic term sets (DPLTSs). Firstly, the DPLTSs is introduced. Then, combine the traditional EDAS method with DPLTSs information, the DPL-EDAS method is established and the computing steps for MAGDM are built. Finally, there are a numerical case involving sustainable supplier selection and some comparisons in this paper. The comparisons are used to illustrate advantages of DPL-EDAS method. Show more
Keywords: Multiple attribute group decision making (MAGDM), dual probabilistic linguistic term sets (DPLTSs), EDAS method, ITARA method, sustainable supplier selection
DOI: 10.3233/JIFS-230117
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 6, pp. 9495-9512, 2023
Authors: Wang, Encheng | Liu, Xiufeng | Wan, Jiyin
Article Type: Research Article
Abstract: Among the indoor localization algorithms, the algorithm based on traditional Back Propagation Neural Network (BPNN) has the problems of slow convergence and easy to fall into local optimum. It is difficult to apply the algorithm in noisy environments. Therefore, in this paper, we propose a novel indoor localization algorithm where the whole localization process is divided into two parts: data preprocessing and localization output. Data preprocessing means using filtering algorithm to process the Received Signal Strength Indication (RSSI) sequence. It is considered that the initial value of the received sequence has a significant impact on the performance of Kalman Filter …(KF). An improved Kalman Filtering algorithm (DBSCAN-KF) is proposed based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. First, the RSSI values that are seriously disturbed by noise in the sequence are removed using the DBSCAN algorithm, and then the RSSI sequences are processed using KF so that the RSSI values can be closer to the theoretical values. The localization output part is to reduce the localization error caused by the BPNN. In this paper, the Differential Evolution (DE) algorithm and Particle Swarm Optimization (PSO) algorithm are combined, and the Differential Evolution Particle Swarm Optimization (DE-PSO) algorithm is proposed. The BPNN weights and thresholds are optimized in parallel, which improves the speed and ability of global optimization search and further avoids the shortcomings of traditional BPNNs that are prone to fall into local optimization in the training process. Experimental results show that the BPNN localization algorithm based on DBSCAN-KF improves the average localization accuracy by 0.26m compared with the BPNN localization algorithm without filtering. After filtering, the localization algorithm based on DE-PSO improved BPNN (DE-PSO-BP) improves the average localization accuracy by about 24% compared with the localization algorithm based on DE-PSO-BP. The localization algorithm based on DE-PSO-BP improves the average localization accuracy by about 61% compared with the traditional BPNN. Show more
Keywords: Indoor localization, RSSI, Kalman filtering, DBSCAN-KF, DE-PSO-BP
DOI: 10.3233/JIFS-230178
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 6, pp. 9513-9525, 2023
Authors: Zhang, Xianyong | Wang, Qian | Fan, Yunrui
Article Type: Research Article
Abstract: Feature selection facilitates classification learning and can resort to uncertainty measurement of rough set theory. By fuzzy neighborhood rough sets, the fuzzy-neighborhood relative decision entropy (FNRDE) motivates a recent algorithm of feature selection, called AFNRDE. However, FNRDE has fusion defects for interaction priority and hierarchy deepening, and such fusion limitations can be resolved by operational commutativity; furthermore, subsequent AFNRDE has advancement space for effective recognition. For the measurement reinforcement, an improved measure (called IFNRDE) is proposed to pursue class-level priority fusion; for the algorithm promotion, the corresponding selection algorithm (called AIFNRDE) is designed to improve AFNRDE. Concretely, multiplication fusion of …algebraic and informational measures is preferentially implemented at the class level, and the hierarchical summation generates classification-level IFNRDE. IFNRDE improves FNRDE, and its construction algorithm and granulation monotonicity are acquired. Then, IFNRDE motivates a heuristic algorithm of feature selection, i.e., AIFNRDE. Finally, relevant measures and algorithms are validated by table examples and data experiments, and new AIFNRDE outperforms current AFNRDE and relevant algorithms FSMRDE, FNRS, FNGRS for classification performances. Show more
Keywords: Feature selection, fuzzy neighborhood rough set, uncertainty measure, relative decision entropy, hierarchical fusion
DOI: 10.3233/JIFS-223384
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 6, pp. 9527-9544, 2023
Authors: Shen, Hanhan | Pan, Xiaodong | Peng, Xiaoyu | Dan, Yexing | Qiao, Junsheng
Article Type: Research Article
Abstract: This paper focuses on simplifying the structure of fuzzy systems and improving the precision. By regarding the fuzzy rule base as a mapping from the vague partition on the input universe to the vague partition on the output universe, we first design a new type of fuzzy system using the complete and continuous fuzzy rule base in terms of vague partitions. We then exploit Weierstrass’s approximation theorem to show that this new type of fuzzy system can approximate any real continuous function on a closed interval to arbitrary accuracy and provide the corresponding approximation accuracy with respect to infinite norms. …We also provide two numerical examples to illustrate the effectiveness of this new type of fuzzy system. Both theoretical and numerical results show that this new type of fuzzy system achieves the quite approximation effect with a few fuzzy rules. Show more
Keywords: Vague partition, Fuzzy system, Fuzzy rule base, Approximation
DOI: 10.3233/JIFS-223542
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 6, pp. 9545-9563, 2023
Authors: Sathya, V. | Mahendra Babu, G.R. | Ashok, J. | Lakkshmanan, Ajanthaa
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-224586
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 6, pp. 9565-9579, 2023
Authors: Yu, Bin | Zhu, Qing | Fu, Yu | Cai, Mingjie
Article Type: Research Article
Abstract: Forecasting is making predictions about what will happen or how things will change. This can help people avoid blindness and losses and play a significant role in their lives. In multi-attribute prediction problems, the correlation between attributes is often ignored, which affects prediction accuracy. Based on fuzzy rough sets and logistic regression, this paper proposes a new logistic regression method that fully considers attribute correlation, namely a twin logistic regression method based on attribute-oriented fuzzy rough sets. Firstly, attribute-oriented fuzzy rough sets are studied and analyzed. Then, the optimistic and pessimistic predictions are achieved by fuzzy rough sets and logistic …regression, and the final result is obtained by fusing the optimistic and pessimistic predictions. Finally, the effectiveness of the twin logistic regression method is verified. Show more
Keywords: Attribute-oriented fuzzy rough set, logistic regression, twin logistic regression based on attribute-oriented fuzzy rough set, multi-attribute prediction
DOI: 10.3233/JIFS-222986
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 6, pp. 9581-9597, 2023
Authors: Li, Bing | Cao, Yuwei | Li, Yongkun
Article Type: Research Article
Abstract: In this paper, the existence, uniqueness and global exponential stability of pseudo almost periodic solutions for a class of octonion-valued neutral type high-order Hopfield neural network models with D operator are established by using the Banach fixed point theorem and differential inequality techniques. Compared with most existing models, in this class of networks, all connection weights and activation functions are assumed to be octonion-valued functions except for time delays. And unlike most of the existing methods of studying octonion-valued neural networks, our method is a non-decomposition method, that is, the method of directly studying octonion-valued systems. The results and …methods in this paper are new. In addition, an example and its numerical simulation are given to illustrate the feasibility of our results. Show more
Keywords: Octonion, neutral type neural network, D operator, pseudo almost periodic solution, global exponential stability
DOI: 10.3233/JIFS-223766
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 6, pp. 9599-9613, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl