Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Lin, Shaopei | Zhu, Wei
Article Type: Research Article
Abstract: This paper summarizes the relationship of subjective information with artificial intelligence (AI) technology and points out how the role of subjective information and its position in AI. Eventually, the characteristic of digital era is the “softening of the theories and hardening of the experiences”. Subjective information is widely used in digital revolution for transforming the qualitative estimations into quasi-quantitative solutions, such as the empirical methods in decision making for quantitative management, etc., it will be the transferor for realizing it. The theoretical formulation of how subjective information is digitized through “Fuzzy-AI Model” for digital revolution is presented in this paper; …it has becoming a universal problem solver of utilizing AI technology for quantizing the degree uncertainties in decision-making and fuzzy estimation. Besides, the “Big Data” searching will heavily depend on the completeness of its source information, yet “subjective information” approach can directly predict human thinking or the internal law of complicated objective events into an explicit digital form, for the completeness of source information to make the correct and comprehensive “Big Data” prediction possible. Practical case studies are presented. Show more
Keywords: Subjective information, AI application, mathematical operator, fuzzy-AI model, intelligent design
DOI: 10.3233/JIFS-211624
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 7577-7587, 2021
Authors: Yihong, Li | Yunpeng, Wang | Tao, Li | Xiaolong, Lan | Han, Song
Article Type: Research Article
Abstract: DBSCAN (density-based spatial clustering of applications with noise) is one of the most widely used density-based clustering algorithms, which can find arbitrary shapes of clusters, determine the number of clusters, and identify noise samples automatically. However, the performance of DBSCAN is significantly limited as it is quite sensitive to the parameters of eps and MinPts . Eps represents the eps-neighborhood and MinPts stands for a minimum number of points. Additionally, a dataset with large variations in densities will probably trap the DBSCAN because its parameters are fixed. In order to overcome these limitations, we propose a new …density-clustering algorithm called GNN-DBSCAN which uses an adaptive Grid to divide the dataset and defines local core samples by using the Nearest Neighbor. With the help of grid, the dataset space will be divided into a finite number of cells. After that, the nearest neighbor lying in every filled cell and adjacent filled cells are defined as the local core samples. Then, GNN-DBSCAN obtains global core samples by enhancing and screening local core samples. In this way, our algorithm can identify higher-quality core samples than DBSCAN. Lastly, give these global core samples and use dynamic radius based on k-nearest neighbors to cluster the datasets. Dynamic radius can overcome the problems of DBSCAN caused by its fixed parameter eps. Therefore, our method can perform better on dataset with large variations in densities. Experiments on synthetic and real-world datasets were conducted. The results indicate that the average Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), Adjusted Mutual Information (AMI) and V-measure of our proposed algorithm outperform the existing algorithm DBSCAN, DPC, ADBSCAN, and HDBSCAN. Show more
Keywords: Density-based clustering algorithm, Grid, The nearest neighbor, DBSCAN
DOI: 10.3233/JIFS-211922
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 7589-7601, 2021
Authors: More, Sujeet | Singla, Jimmy
Article Type: Research Article
Abstract: Knee rheumatoid arthritis (RA) is the highly prevalent, chronic, progressive condition in the world. To diagnose this disease in the early stage in detail analysis with magnetic resonance (MR) image is possible. The imaging modality feature allows unbiased assessment of joint space narrowing (JSN), cartilage volume, and other vital features. This provides a fine-grained RA severity evaluation of the knee, contrasted to the benchmark, and generally used Kellgren Lawrence (KL) assessment. In this research, an intelligent system is developed to predict KL grade from the knee dataset. Our approach is based on hybrid deep learning of 50 layers (ResNet50) with …skip connections. The proposed approach also uses Adam optimizer to provide learning linearity in the training stage. Our approach yields KL grade and JSN for femoral and tibial tissue with lateral and medial compartments. Furthermore, the approach also yields area under curve (AUC) of 0.98, accuracy 96.85%, mean absolute error (MAE) 0.015, precision 98.31%, and other commonly used parameters for the existence of radiographic RA progression which is improved than the existing state-of-the-art. Show more
Keywords: Magnetic resonance imaging, ResNet50, MultiResUNet, Sparse aware noise reduction Convolutional neural network (SANR_CNN), Adam optimizer
DOI: 10.3233/JIFS-212015
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 7603-7614, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl