Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Touqeer, Muhammad | Jabeen, Salma | Irfan, Rida
Article Type: Research Article
Abstract: Multi-criteria decision making (MCDM) problems have been solved involving various types of fuzzy sets. We know that interval type-2 fuzzy sets (IT2FSs) are the most representative known fuzzy sets since they have the ability to capture both type of linguistic uncertainties associated with a word namely, the intra-personal and inter-personal uncertainties respectively. Here for MCDM problems, we will use the three trapezoidal fuzzy numbers (TT2FNs) which are more effective in capturing the uncertainty than IT2FSs, just like triangular fuzzy numbers has a better representational power than simple interval numbers. Moreover, Entropy method is employed for evaluating the values of unknown …attribute weights. The ranking method employed here is the grey correlation projection method (GRPM), obtained by joining grey relational method (GRM) and projection method (PM) respectively. Lastly an example will be given to check the productivity of the suggested method. Show more
Keywords: Multi-criteria decision making (MCDM), three trapezoidal fuzzy number (TT2FN), Entropy method (EM), grey correlation projection method (GRPM)
DOI: 10.3233/JIFS-179682
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 5957-5967, 2020
Authors: Touqeer, Muhammad | Shaheen, Kiran | Irfan, Rida
Article Type: Research Article
Abstract: Here we have employed three trapezoidal fuzzy numbers (TT2FNs) to deal with a multi-criteria decision making (MCDM) problems. The introduced technique takes into consideration the left and right areas of the three types of membership memberships involved in TT2FNs and also considers the risk attitude of decision maker. The presented method is more generalized since we have used TT2FNs, which are more effective in capturing uncertainty than IT2FSs, just like triangular fuzzy numbers has a better representational power than simple interval numbers. We have considered the unknown attribute environment where maximizing deviation method has been employed to evaluate the attribute …weights. Moreover, evaluation model for manufacturing plants with linguistic information has been provided as an illustrative example for the justification of the proposed technique. Show more
Keywords: MCDM, IT2 fuzzy set (IT2FS), maximizing deviation, generalized fuzzy number, three trapezoidal fuzzy numbers (TTFNs)
DOI: 10.3233/JIFS-179683
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 5969-5978, 2020
Authors: Touqeer, Muhammad | Hafeez, Abid | Arshad, Misbah
Article Type: Research Article
Abstract: Here we present a method to deal with multi-attribute decision making(MADM)problems when the attribute values are modeled in the form of interval type-2 trapezoidal fuzzy numbers (IT2FNs), and the attribute weights are completely unknown. Grey Relation Projection Method (GRPM), which is a combination of “grey relational analysis method" and the “projection method" is employed for ranking the alternatives. The linguistic information is modeled in the form of “interval type-2 trapezoidal fuzzy numbers" (IT2TFN) which are able to capture both the intra personal and inter personal uncertainties associated with a linguistic term. Information Entropy Method (IEM) is used for calculating unknown …attribute weights. Lastly, an illustrative example is provided as a verification of the developed approach. Show more
Keywords: Multi-attribute decision making (MADM), interval type-2 trapezoidal fuzzy number (IT2TFN), Information Entropy method (IEM), grey relational projection method (GRPM)
DOI: 10.3233/JIFS-179684
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 5979-5986, 2020
Authors: Gupta, Punit | Goyal, Mayank Kumar | Mundra, Ankit | Tripathi, Rajan Prasad
Article Type: Research Article
Abstract: Technology has enabled us to carry the world on our tips. Cloud computing has majorly contributed to this by providing infrastructure services on the go using pay per use model and with high quality of services. Cloud services provide resources through various distributed datacenters and client requests been fulfilled over these datacenters which act as resources. Therefore, resource allocation plays an important role in providing a high quality of service like utilization, network delay and finish time. Biogeography-based optimization (BBO) is an optimization algorithm that is an evolutionary algorithm used to find optimized solution. In this work BBO algorithm is …been used for resource optimization problem in cloud environment at infrastructure as a service level. In past several task scheduling algorithms are being proposed to find a global best schedule to achieve least execution time and high performance like genetic algorithm, ACO and many more but as compared to GA, BBO has high probability to find global best solution. Existing solutions aim toward improving performance in term of power execution time, but they have not considered network performance and utilization of the systems performance parameters. Therefore, to improve the performance of cloud in network-aware environment we have proposed an efficient nature inspired BBO algorithm. Further, the proposed approach takes network overhead and utilization of the system into consideration to provide improved performance as compared to ACO, Genetic algorithm as well as with PSO. Show more
Keywords: BBO, cloud infrastructure, meta-heuristic, resource allocation
DOI: 10.3233/JIFS-179685
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 5987-5997, 2020
Authors: Gal, Viviane | Banerjee, Soumya | Rad, Dana V.
Article Type: Research Article
Abstract: Pattern of emotion identification is one of the improvised research application regarding facial expression as major concern, in those cases, conventional facial expressions for patterns identification. The present model is based on signal collected from physiological sensors followed by consecutive deployment of unsupervised machine learning model. The proposed model is unsupervised in following aspects: firstly, it introduces Expectation Maximization problem with respect to unknown emotion labels to be derived from the measures. Correlation of physiological signal and individual emotion labels can be identified. This follows a considerable emotion classification method. However, the output of EM model doesn’t ensure the …correct identification of emotion class, if any. We introduce Support Vector Regression (SVR) as output module of this model. Hence, we try to forecast the probable classes of emotion after investigating the ranges of values and appropriate standard threshold values of physiological signal with respect to respective emotion class e.g. angry, frustration and joy. This should be noted that, the proposed model doesn’t envisage facial expression analysis. However, after successful implementation of Gaussian behaviors of mixed physiological signal, we can enhance the accuracy of identification. Significant emotional context exists in output with more precise results of emotion identification phases. Show more
Keywords: Deep learning, emotion pattern, hybrid model, physiological sensors, unsupervised learning
DOI: 10.3233/JIFS-179686
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 5999-6017, 2020
Authors: Nath, Malaya Kumar | Dandapat, Samarendra | Barna, Cornel
Article Type: Research Article
Abstract: Here, an unique approach is presented for automatic detection of blood vessels and estimation of retinal disorder from color fundus image. This technique can be used to determine the progression of retinal disorders due to diabetic retinopathy, which can help in better evaluation and treatment for clinical purposes. The proposed method combines the Gaussian based matched filter with Kirsch for extraction of blood vessels, and inpainting technique to determine the pathologically affected region. This is tested on various databases (such as: DRIVE, Aria and Glaucoma etc.,). Various performance measures (such as: accuracy, sensitivity, specificity and F-score etc.,) are used to …estimate the quality of blood vessels detection. Here, we have applied the segmentation technique to the subband-2 image in 5-level wavelet decomposition by db4 mother wavelet. This reduces the computational time for inpainting. Comparing the blood vessels and the pathologies, index for blood vessel damage is calculated. This index is proportional to retinal damage in case of diabetic retinopathy. Higher index corresponds to significant amount of blood vessel damage. From the index, progression of the disease and condition of the retina can be assessed. The index for blood vessel damage for Im-24 is 2.98%, whereas for Im-18 is 68.78%. This indicates that in Im-18 more blood vessels are affected by pathologies. It also indicates that maximum portion of the retina is affected by pathology. Show more
Keywords: Retinal vascular disorder, matched filter, inpainting, F-score, wavelet decomposition
DOI: 10.3233/JIFS-179687
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6019-6030, 2020
Authors: Naga Srinivasu, P. | Srinivasa Rao, T. | Dicu, Anca M. | Mnerie, Corina Anca | Olariu, Iustin
Article Type: Research Article
Abstract: MRI image segmentation, a challenging task in medical diagnostics aids in extracting the summarized information of the anatomy of the human brain, thereby offering the potentiality for accurate treatment of the disease. The purpose of this work is to elevate the performances of different optimization techniques that are used in automated segmentation procedures. The performance of four algorithms was evaluated quantitatively over the genetic algorithm-based segmentation, which is the prevailing approach in automated segmentation. The upshot exhibits the accuracy and performance of various optimization techniques with a genetic algorithm.
Keywords: Genetic algorithm, harmonic mean, magnetic resonance imaging, SVM, PSO, TLBO
DOI: 10.3233/JIFS-179688
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6031-6043, 2020
Authors: Farooq, Umar | Gu, Jason | Asad, Muhammad Usman | Abbas, Ghulam | Hanif, Athar | Balas, Marius
Article Type: Research Article
Abstract: This paper proposes an online algorithm for identifying the nonlinear dynamical systems and is termed as neo-fuzzy based brain emotional learning plant identifier (NFBELPI). As the name suggests, the proposed identifier is a combination of brain emotional learning network and neo-fuzzy neurons. The integration of these two networks is realized in a way that retains the characteristics of both the networks while an enhanced performance is achieved at the same time. Precisely, the orbitofrontal cortex section of the brain emotional learning network is fused with neo-fuzzy neurons with a view to equip it with more knowledge than does the amygdala …section possesses. The proposed identifier accepts n -input and m -output samples to generate an estimate of the plant output and employs a brain emotional learning algorithm to lower the estimation error by adjusting a total of ((n + m + 1) × p ) + (n + m + 2) weights, with p being the number of neo-fuzzy neurons. The proposal is validated in a MATLAB programming environment using a simulated Narendra dynamical plant as well as against the data recorded from real forced duffing oscillator. Comparison with a brain emotional learning plant identifier (BELPI) and some other state-of-the art identifiers in terms of root mean squared error (RMSE) criterion reveals the improved performance of the proposed identifier. Show more
Keywords: System identification, brain emotional learning, neo-fuzzy neurons, MATLAB
DOI: 10.3233/JIFS-179689
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6045-6051, 2020
Authors: Thang, Tran Ngoc | Solanki, Vijender Kumar | Dao, Tuan Anh | Thi Ngoc Anh, Nguyen | Van Hai, Pham
Article Type: Research Article
Abstract: In this article, we use a monotonic optimization approach to propose an outcome-space outer approximation by copolyblocks for solving strictly quasiconvex multiobjective programming problems which include many classes of captivating problems, for example when the criterion functions are nonlinear fractional. After the algorithm is terminated, with any given tolerance, an approximation of the weakly efficient solution set is obtained containing the whole weakly efficient solution set of the problem. The algorithm is proved to be convergent and it is suitable to be implemented in parallel using convex programming tools. Some computational experiments are reported to show the accuracy and efficiency …of the algorithm. Show more
Keywords: Multiobjective programming, monotonic optimization, strictly quasiconvex, outcome space, outer approximation
DOI: 10.3233/JIFS-179690
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6053-6063, 2020
Authors: Deb, Dipankar
Article Type: Research Article
Abstract: For decentralized biomass plants using farm residue as input, the economic viability study are available in literature. The study calculates the different aspects of the cost of biomass power plants such as the cost of capital investment, running and maintenance of plants, residue processing costs, and the economic value equivalent of embedded nutrients (NPK) that are lost from residues. A comparison is drawn between the costs and revenue from the plant’s power generation. The word modest is used for giving analogy to the power plant which has capacity higher than decentralized power plants and lower than centralized power plants. In …Gujarat there exists total four biomass power plants which should be considered in the modest category. The aim is to establish the cost efficiency of adding soil nutritious chemical fertilizers and using agricultural residues for the purposes of energy-building biomass (rather than incorporating soil). To study economic viability, the discounted rate method is used. In our paper, a modest / centralized biomass power plant has been studied for economic feasibility. For this, we have selected the state of Gujarat and followed district-wise analysis. We have used the penalty method given in optimization research in order to calculate transportation and other costs. Also, we studied a soil nutrition index for measuring soil health and the proportions of N, P and K in the soil. For annual crop production, the data used is district-wise for Gujarat state for the year 2011-12. Show more
Keywords: Agricultural residue, Biomass energy, Soil incorporation, Centralized basis, NPK
DOI: 10.3233/JIFS-179691
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6065-6074, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl