Purchase individual online access for 1 year to this journal.
Price: EUR 90.00
Impact Factor 2024: 1
Biorheology is an international interdisciplinary journal that publishes research on the deformation and flow properties of biological systems or materials. It is the aim of the editors and publishers of
Biorheology to bring together contributions from those working in various fields of biorheological research from all over the world. A diverse editorial board with broad international representation provides guidance and expertise in wide-ranging applications of rheological methods to biological systems and materials.
The aim of biorheological research is to determine and characterize the dynamics of physiological processes at all levels of organization. Manuscripts should report original theoretical and/or experimental research promoting the scientific and technological advances in a broad field that ranges from the rheology of macromolecules and macromolecular arrays to cell, tissue and organ rheology. In all these areas, the interrelationships of rheological properties of the systems or materials investigated and their structural and functional aspects are stressed.
The scope of papers solicited by
Biorheology extends to systems at different levels of organization that have never been studied before, or, if studied previously, have either never been analyzed in terms of their rheological properties or have not been studied from the point of view of the rheological matching between their structural and functional properties. This biorheological approach applies in particular to molecular studies where changes of physical properties and conformation are investigated without reference to how the process actually takes place, how the forces generated are matched to the properties of the structures and environment concerned, proper time scales, or what structures or strength of structures are required.
Biorheology invites papers in which such 'molecular biorheological' aspects, whether in animal or plant systems, are examined and discussed. While we emphasize the biorheology of physiological function in organs and systems, the biorheology of disease is of equal interest. Biorheological analyses of pathological processes and their clinical implications are encouraged, including basic clinical research on hemodynamics and hemorheology.
In keeping with the rapidly developing fields of mechanobiology and regenerative medicine,
Biorheology aims to include studies of the rheological aspects of these fields by focusing on the dynamics of mechanical stress formation and the response of biological materials at the molecular and cellular level resulting from fluid-solid interactions. With increasing focus on new applications of nanotechnology to biological systems, rheological studies of the behavior of biological materials in therapeutic or diagnostic medical devices operating at the micro and nano scales are most welcome.
Abstract: A mathematical model, which can be applied to the study of blood flow in arteries of great and medium diameter, has been developed by considering the case of pulsatile flow superposed on steady flow in an initially stressed tube of orthotropic elasticity. The components of the fluid velocity and of the wall displacement are determined as functions of the transmural pressure developed in Fourier Series and of the different rheological parameters.1 1 The abstract of this paper appears in Biorheology 12 , 81, 1975. The abstract of this paper appears in Biorheology 12 ,…81, 1975.
Show more
DOI: 10.3233/BIR-1976-13102
Citation: Biorheology,
vol. 13, no. 1, pp. 7-20, 1976
Abstract: Studies of creep compliance behavior of aqueous solutions of egg yolk lipoproteins indicate formation of viscoelastic films at n -heptane and n -hexane interfaces. Rheological parameters are reported. At other interfaces: water–air, water–cyclohexane, water–paraffin oil—the films were purely viscous.
DOI: 10.3233/BIR-1976-13111
Citation: Biorheology,
vol. 13, no. 1, pp. 79-81, 1976