Authors: Zhu, Shu | Herbig, Bradley A. | Li, Ruizhi | Colace, Thomas V. | Muthard, Ryan W. | Neeves, Keith B. | Diamond, Scott L.
Article Type:
Review Article
Abstract:
Microfluidic devices create precisely controlled reactive blood flows and typically involve: (i) validated anticoagulation/pharmacology protocols, (ii) defined reactive surfaces, (iii) defined flow-transport regimes, and (iv) optical imaging. An 8-channel device can be run at constant flow rate or constant pressure drop for blood perfusion over a patterned collagen, collagen/kaolin, or collagen/tissue factor (TF) to measure platelet, thrombin, and fibrin dynamics during clot growth. A membrane-flow device delivers a constant flux of platelet agonists or coagulation enzymes into flowing blood. A trifurcated device sheaths a central blood flow on both sides with buffer, an ideal approach for on-chip recalcification
…of citrated blood or drug delivery. A side-view device allows clotting on a porous collagen/TF plug at constant pressure differential across the developing clot. The core-shell architecture of clots made in mouse models can be replicated in this device using human blood. For pathological flows, a stenosis device achieves shear rates of >100,000 s−1 to drive plasma von Willebrand factor (VWF) to form thick long fibers on collagen. Similarly, a micropost-impingement device creates extreme elongational and shear flows for VWF fiber formation without collagen. Overall, microfluidics are ideal for studies of clotting, bleeding, fibrin polymerization/fibrinolysis, cell/clot mechanics, adhesion, mechanobiology, and reaction-transport dynamics.
Show more
Keywords: Harry Goldsmith, microfluidics, hemorheology, platelet, von Willebrand factor
DOI: 10.3233/BIR-15065
Citation: Biorheology,
vol. 52, no. 5-6, pp. 303-318, 2015
Price: EUR 27.50