Bio-Medical Materials and Engineering - Volume 19, issue 2-3
Purchase individual online access for 1 year to this journal.
Price: EUR 245.00
Impact Factor 2024: 1.0
The aim of
Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems.
Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.
Abstract: Samples of Paramecium caudatum are observed by means of a scanning electron microscope (SEM) and a projection X-ray microscope (XRM) with computer tomography (CT) function. The samples are fixed with two kinds of fixatives, glutaraldehyde and osmium-tetra oxide acid. After the fixation and replacement procedure with t-buthyl alcohol, the samples followed by a freeze drying, well retain their structures. Surface structures, cilia and microfibrillar systems including infraciliary lattice structures, are clearly depicted by SEM observation. On the other hand, XRM images give quite different information, namely, in the case of osmium oxide fixation, the structures of internal organelles like the…macronucleus placed in the central part of cell body and trichocysts located under the cell membrane of a whole body are visible. In the case of glutaraldehyde fixation, the surface structures and internal structures are both visible but their image contrast is fairly weak. In order to examine toxicological effect, Paramecium caudatum samples treated in the environmental condition containing nano-particles of Ag (17 nm across) and Co-ferrite (300 nm across) are observed with results of certain morphological differences, namely, inner vacuoles increase in number and in volume in Co-ferrite treated cells as compared with Ag treated ones. But then, cilia-less areas increase on the surface of the body of Ag treated cells. In the case of Co-ferrite treated cells, cilia-less areas are not clearly detected. Whether these morphological differences observed in Ag and Co-ferrite treated cells are caused by the differences of materials or particle sizes remain to be examined in future.
Show more
Abstract: In the present study, we focused on the optimal conditions for observation of morphology and atomic structure of carbon nanotube (CNT) in vivo by transmission electron microscopy (TEM). Either low-voltage or high-voltage TEMs was chosen for the high-contrast or high-resolution imaging of subcutaneous tissue and the multi-wall CNT (MWCNT). The morphology and structure of each cell organelle were well recognized using the low-voltage TEM at 75 kV. Individual MWCNTs forming the cluster were also visible by the low-voltage TEM. On the contrary, the high-voltage TEM image at 1250 kV shows poor contrast on both the cell organelles and MWCNTs. However,…graphene layers of MWCNT were clearly visible in the HRTEM image using the high-voltage TEM. The influence of the surrounding biological tissue can be disregarded by the high-energy electrons due to their weak scattering/absorption effect in the tissue. It was indicated that the usage of the high-voltage TEM is quite effective to the atomic structure analysis of nano-crystalline materials in vivo.
Show more
Keywords: Low-voltage and high-voltage transmission electron microscopy, high-resolution electron microscopy, multi-wall carbon nanotube, in vivo
Abstract: Magnetic metal particles are known to induce heat energy under an alternating magnetic field (AMF). We developed a local tumor-heating device incorporating an MgFe2 O4 needle for the purpose of mild ablation for cancer treatment. A needle made from sintered MgFe2 O4 particles was embedded in the hepatic or breast tumors. Tumors were then heated by the energy dissipated from the needle exposed to an AMF. We sequentially evaluated histological changes, cellular activity of tumors, and the extent of thermal effect using nicotinamide adenine dinucleotide (NADH) diaphorase and terminal deoxynucleotidyl tranferase-mediated digoxigenin-DUTP nick-end labeling (TUNEL) staining. The mean…temperature of the tumor tissue during heating was about 60°C. Nuclei of the tumor cells became hyper-chromatin immediately after heating. The injured area spread progressively until 3 days after heating; when the area was surrounded by fibroblasts (meaning is not clear). Tumors disappeared after treatment without complications. This is the first time that the complete death of tumor cells has been realized by raising the tumor temperature above 60°C using the heat generated by magnetic metal particles exposed to AMF. This device may be useful in the future for local hyperthemic treatment of human cancers.
Show more
Keywords: Inductive heating, magnesium ferrite, cancer treatment, ablation
Abstract: Certain molecules, which are able to directly translocate across phospholipid bilayer membranes (cell or endosormal membrane), can be useful as carriers (vectors) for drags (especially polymeric drags). We have studied the translocationability of the hydroxyapatite nanoparticle–poly-L-arginine complex through the negatively charged phospholipid bilayer membranes by using several instruments. It was confirmed by means of a confocal laser scanning microscopy (CLSM) not only the fact that the complex can translocate through the membranes but also the fact that the complexes were still retained in the inner water layer of the liposome even after the translocation.
Abstract: Synthetic bone cement that has zinc oxide core particles covered with hydroxyapatite (HAP) was developed; that is, the conversion of hopeite, the traditional zinc phosphate cement, into HAP was attempted. Here, hopeite is the final product of the reaction between powders and trituration liquid of the traditional zinc phosphate cement. This cement may have many advantages not only in terms of biological functions but also the setting process of the traditional cement and the mechanical properties of the developed compact if the hopeite can be converted into calcium phosphate (CP). In this study, calcium nitrate solutions of various concentrations were…used for the conversion of hopeite crystals into CP. The products after the solution treatment were analyzed by X-ray diffractometry (XRD), Fourier transform infrared spectrometry (FTIR), and scanning electron microscope (SEM) observation. These results indicated that the converted scholzite crystals could be partially detected. Several types of set zinc phosphate cement with different P/L ratios were arranged. The surface products of the set cement after the solution treatment were analyzed by XRD. However, the crystal phase such as hopeite was not detected except for zinc oxide. The set cement, which was treated with the calcium nitrate solution, was immersed in simulated body fluid (SBF). HAP-like crystals on the set cement could be detected for the specimens immersed for 4 weeks. These findings suggested that the binding phase in the set cement could be converted into HAP by immersion in SBF.
Show more
Abstract: We fabricated novel chitosan/hydroxyapatite (HAp) nanocomposites with porous structure by the co-precipitation and porogen leaching method. SEM observation confirmed that the porous chitosan/HAp nanocomposites with 60.6% and 87.1% porosity showed the interconnective pores with pore diameters in the range of 100–200 μm. The composites were found to be mechanically flexible and could be easily formed into any desired shape. The mechanical strength was enhanced by the heat treatment with saturated steam, which was ascribed to the formation of hydrogen bonds between chitosan molecules. The composites subcutaneously implanted in the backs of SD rats for 3 weeks caused little inflammation, and…new blood vessel growth and giant cells were found around the composite accompanied with roughening of the surface due to degradation, showing good biocompatibility and biodegradation.
Show more
Abstract: The purpose of this study is to compare in vivo retention of BMP-2 and bone induction in HAp (porosity: 60–80%, pore size: 100–600 μm, sintering temperature: 800°C, surface area: 1 m2 /g) and β-TCP (porosity: 75%, pore size: 100–400 μm, sintering temperature: 1050°C, surface area: 4 m2 /g). We estimated the in vivo release profile of 125 I-labeled BMP-2 and bone induction of hard tissues histologically. The amount of BMP-2 remaining in the β-TCP at 1 day after implantation was 49.6%, while the amount was 34.0% in the HAp. Furthermore, the HAp and β-TCP containing 0.0, 0.05, 0.1, 0.3, 0.5,…1.0, 5.0 μg of BMP-2 were implanted into the back subcutis of 4-week old Wistar rats. At 3 weeks after implantation, the ceramics were explanted and evaluated histologically. The HAp/BMP-2 (5.0 μg) system showed 3.0% in the total volume of bone at 3 weeks, while only in the β-TCP/BMP-2 (5.0 μg) system showed 32.5%. These results indicate that the absorbable β-TCP block may be an effective bioceramic for bone induction to deliver BMP-2 to the site of action.
Show more
Abstract: Carbon nanotubes (CNTs) exhibit excellent cell proliferation properties, which can serve as a scaffold for cell culturing. However, there are only a few reports on adhesion of osteoblast-like cells to a CNT sheet. In this study, we investigated adhesion of osteoblast-like cells to single-walled carbon nanotube (SWNT) and multi-walled carbon nanotube (MWNT) sheets and compared these adhesions with that on a cell culture polystyrene dish by using a cell adhesion test and a scanning electron microscope. The MWNT sheets exhibited faster adhesion of cells at an initial stage than SWNT sheets and cell culture polystyrene dish. The number of attached…cells on the MWNT sheets seemed to be greater than on SWNT sheets and cell culture polystyrene. Moreover, the MWNT sheets exhibited both high speed and good capacity for cell adhesion. However, the surface of the MWNT sheets was such that it facilitated cell adherence but hindered the spreading of the attached cells. Interestingly, cell adhesion to CNT sheets was significantly influenced by pre-coating with serum. These results indicate that CNT sheets would play an important role in adsorption of serum proteins, which would consequently facilitate cell adhesion, and that the MWNT sheets have a high cell adhesiveness.
Show more
Abstract: Silicone rubbers are widely used as tissue implants because of their flexibility and chemical stability. However, they have limited cellular adhesiveness and may cause problems in the long term. In this study, a coating of carbon nanotubes (CNTs) was applied to silicone rubber to improve its cellular adhesiveness. Scanning electron micrograph of this coating revealed that CNTs had formed a densely packed meshwork; the Ra values and protein adsorption capacity were enhanced. Although the contact angle did not change after coating, it decreased after immersion into a culture medium. After cultivation for 6 d, while Saos-2 cells were hardly…observed on untreated silicone, the cells proliferated on CNT-coated silicone. Thus, CNT coating might be a simple and effective solution to problems associated with silicone implants.
Show more
Keywords: Silicone rubber, carbon nanotubes, osteoblast, cell proliferation, protein adsorption
Abstract: An acid–base resistant zone (ABRZ) has been shown to be created under a hybrid layer in a self-etching adhesive system at the adhesive/dentin interface. The purpose of this study was to assess the nanostructure of the ABRZ by applying all-in-one adhesive systems. Human premolar dentin was treated with one of two all-in-one adhesive systems; Clearfil Tri-S Bond and G-Bond according to the manufacturers' instructions. After placement of a resin composite, the bonded interface was vertically sectioned and subjected to an acid-base challenge. Following this, the nanostructure of the ABRZ was examined by SEM and TEM. The SEM observations of the…adhesive-dentin interface after the acid-base challenge indicated that a hybrid layer less than 1 μm thick was created, and a ABRZ was formed beneath the hybrid layer for each adhesive system. The TEM observations indicated that the ABRZ contained mineral components in both adhesive systems, however, the thickness of the ABRZ was material dependent. The application of the all-in-one adhesive systems created an ABRZ at the underlying dentin, which reinforced normal dentin against dental caries. Therefore, this zone was named ‘Super Dentin’. Formation of ‘Super Dentin’ is a new approach in caries prevention.
Show more
Abstract: Finely powdered enamel was used to develop a prosthetic resin composite that has good mechanical properties and no potential to abrade opposing tooth structure. Bovine teeth were ground into powder and then the enamel particles were separated from the powder by centrifugation in bromoform–ethanol solution. The resin matrix consisted of UDMA (60 mole %) and Tri-EDMA (40 mole %). Camphorquinone (0.5 mass %) was added to the monomer as a photo-initiator. Fillers were incorporated directly into the resin matrix in amounts of 80 or 85 mass %. The flexural strength and Vickers hardness (Hv ) were measured. The average flexural…strength and Hv values for specimens having 85 mass % filler that had been subjected to heat treatment at 100°C after light-curing were 95.2 and 109.8 MPa, respectively, which are higher than those for most commercial prosthetic resin composites. These findings suggest that a novel prosthetic resin composite with good mechanical properties can be made by loading finely powdered enamel into the resin matrix.
Show more
Abstract: Recent studies have shown that carbon nanotubes (CNTs) can be used as biomedical materials because of their unique properties. CNTs effect nucleation of hydroxyapatite, because of which considerable interest has been generated regarding the use of CNTs in dentistry. However, there are only a few reports on the use of CNTs as dental materials. In this study, we investigated the changes induced in the surfaces of tooth slices by the application of a coating of CNTs by observing CNT-coated tooth slices both macroscopically as well as under a scanning electron microscope. Further, we investigated the effect of CNT coating on…the tensile bond strength of dentin adhesives. CNTs adhered easily to the tooth surfaces when tooth slices were suspended in a CNT-dispersed solution. Interestingly, it was observed that CNTs selectively adhered to the surfaces of dentin and cementum, possibly by adhering to their exposed collagen fibers. In addition, the CNT coating did not affect the tensile bond strength of dentin adhesives. These results indicate that coating of the teeth with CNTs can be a possible application of CNTs as dental materials.
Show more
Abstract: The volatile organic compound (VOC) reduction activity of scallop shell powders fired at 300, 600 and 900°C was examined using formaldehyde (HCHO). Raw shells as well as fired shells immediately after firing at several temperatures, except for 600°C, were found to gradually remove HCHO from the air. In the case of shell powders stored for 3 months after firing, the HCHO reduction activity of the powder fired at 900°C was obviously improved, with the HCHO concentrations rapidly reaching zero within 20 min. It has been found by X-ray diffraction measurements that shell powder stored for 3 months after firing at…900°C contains a small amount of calcium hydroxide (Ca(OH)2 ) generated from calcium oxide (CaO). Our results suggest that Ca(OH)2 may be the effective ingredient in the HCHO reduction.
Show more
Abstract: The purpose of this study was to determine the effects of heat treatment on the bioactivity of hydrothermal-modified titanium in CaO solution for improved bioactivity by immersion in simulated body fluid (SBF). The hydrothermal treatment of titanium in CaO solution was performed at 121°C at 0.2 MPa for 1 h in an autoclave followed by 1 h heat treatments at 200, 400, 600 and 800°C simultaneously. The bioactivity of titanium was evaluated by hydroxyapatite precipitation during immersion in SBF. Surface microstructure changes after the heat treatments and immersion in SBF were determined by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS),…and scanning electron microscopy (SEM). Heat treatments at high temperatures (600 and 800°C) promoted the synthesis of anatase, increased the thickness of the titanium oxide layer on the modified titanium surface and promoted the synthesis of calcium titanate, which possibly promoted the precipitation of apatite in SBF. The extent of precipitations increased with the time of immersion in SBF and the temperature of the heat treatment. Island-like deposits of needle-like crystals were observed only on the surface of the 600 and 800°C heat-treated specimens after two or four week immersions in SBF. The results suggested that treatments of the surface of hydrothermal-treated titanium specimens at high temperatures (600 and 800°C) could be effective for the surface modification of titanium as an implant material offering better osseointegration.
Show more
Abstract: The effect of temperature on crystallinity of carbonate apatite (CAp) foam prepared from α-tricalcium phosphate (α-TCP) foam by hydrothermal treatment was investigated in the present study. The α-TCP foams were prepared through a conventional sintering method using polyurethane foam as template. Then, the resultant α-TCP foams were hydrothermally treated with Na2 CO3 aqueous solution at 100°C, 150°C and 200°C for 72 h. After hydrothermal treatment, the cancellous bone-like macroporous structure of the α-TCP foams was maintained. However, microscopic morphology of the foams' frame significantly changed after the 72 h treatment period. The smooth surface of α-TCP foam disappeared and…the whole surface was covered with plate-like deposits. The plate-like deposits treated at 150°C and 200°C had smooth surface while those treated at 100°C were constructed from spherical particles of approximately 200 nm in diameter. The results of X-ray diffraction and Fourier transform infrared analysis showed that α-TCP was completely converted to CAp and the crystallinity of CAp prepared at 100°C was significantly lower than those prepared at 150°C and 200°C. Hydrothermal treatment of α-TCP foam at 100°C allowed the formation of low-crystalline CAp foam but complete conversion needs a longer treatment period.
Show more
Abstract: Nano-sized particles have received much attention in view of their varied application in a wide range of fields. For example, magnetite (Fe3 O4 ) nanoparticles have been investigated for various medical applications. In this study, we visualized the distribution of administered magnetic nanoparticles in mice using both X-ray scanning analytical microscopy (XSAM) and magnetic resonance imaging (MRI). After administration, the nanoparticles were rapidly dispersed via the blood circulation, and reached the liver, kidney and spleen. Using the XSAM and MRI methods in a complementary fashion, the biodistribution of nano-sized magnetite particles was successfully visualized.
Keywords: Biodistribution, magnetic resonance imaging, nano magnetite
Abstract: We observed the internal diffusion behavior of inorganic micro/nano particles through oral administration. By oral exposure, the fed particles were absorbed through the digestive system then reached some organs after internal diffusion in the body. For example, TiO2 particles fed to mice were detected in the lung, liver, and spleen after 10 days of feeding. Whereas, the absorption efficiency was extremely low compared with intravenous injection. In a comparison of the simple amount of administration, oral exposure required 102 times or more amount by intravenous injection for detection by an X-ray scanning analytical microscope. During dental treatment, micro/nano…particles from tooth or dental materials would generate in the oral cavity, and some of the particles had a possibility to be swallowed, absorbed through the digestive system, and then diffuse into the body. However, our results suggest that biocompatible microparticles that are naturally taken orally affect animals only rarely because of the low absorption efficiency.
Show more
Abstract: Asbestos minerals are thin fiber type of minerals and honorably said as “the minerals of the miracle” because of their valuable natures even in the strategic field. On the other hand, the relation between asbestos exposure and diseases such as lung cancer and malignant mesothelioma was proved around 1970 by epidemiology and an animal experiment in relation to their microstructures. Here, microstructures of chrysotile asbestos, a mainstream of asbestos substances, are shown. It is also shown that in what kinds of environment people are exposed to asbestos and what kinds of biological or epidemical things happen after asbestos exposure. Many…kinds of fibrous materials as the substitutes of asbestos are described in relation to their carcinogenicity.
Show more
Keywords: Structure of asbestos, biological influence of asbestos exposure, asbestos substitutes
Abstract: Transfection is a widely used method in molecular biology for the introduction of foreign nucleic acids (DNA or RNA) into eukaryotic cells that permits to control intracellular processes, i.e. the induction or inhibition of protein expression. Nucleic acids alone cannot penetrate the cell membrane, therefore special carriers like cationic polymers or inorganic nanoparticles are required. Single-shell and multi-shell calcium phosphate nanoparticles were prepared and functionalized with DNA and siRNA. Thereby, the expression of enhanced green fluorescing protein (EGFP) can be induced (by using pcDNA3-EGFP) or silenced (by using siRNA). The single-shell nanoparticles were prepared by rapid mixing of aqueous solutions…of calcium nitrate and diammonium hydrogen phosphate. The multi-shell nanoparticles were produced by adding further layers of calcium phosphate and DNA to protect DNA from the intracellular degradation by endonucleases. The size of the nanoparticles according to dynamic light scattering and electron microscopy was up to 100 nm with a zeta potential around −30 mV. The transfection efficiency of the nanoparticles was tested in vitro in cell culture.
Show more
Abstract: Since adhesive technology was introduced into dental field, metal-based restoration has been gradually replaced by metal-free restoration. Using the adhesive technology, minimum invasive technique has been possible in daily clinical practice as well as esthetic tooth-colored restorations have become very popular all over the world. One of the current issues of the dental adhesive is durability of bond between tooth structure and adhesive resin. Several approaches to overcome the issues have been carried out. Self-etching approach is believed to create durable bond because demineralization of superficial tooth surface is very shallow. Other approach is to utilize the inhibitor of…enzymes which are suggested to catalyze the decomposition of resin composites and are always secreted within the oral environment. In the present study, Colloidal Platinum Nanoparticles (CPN) was applied before the application of 4-META/MMA-TBB resin cement as the third possibility to prolong the durability of bond. This implies that the use of the CPN solution would create higher conversion at the interface compared with conventional bonding procedures.
Show more
Abstract: We initiate some comparisons between Japan, Europe and USA on how far there is governmental support for the ethical, legal, social and environmental dimensions of nanotechnology development. It is evident that in the USA and Europe nanotechnology is now firmly embedded in the consideration of ELSI. Yet Japan has not yet adequately recognized the importance of these dimensions. The history of bioethics in Japan is short. In Europe, as early as 2004, a nanotechnology report by the UK's Royal Society referred to the possibility of some nanotubes and fibres having asbestos-like toxicity. The negative history of asbestos in Europe and…USA is not yet fully identified as a Japanese problem. Japan is therefore in the process of seeking how best to address societal aspects of nanotechnology. Should the precautionary principle be applied to Japan's nanotechnology initiative as in Europe? Should 5–10% of the government's nanotechnology budget be allocated to ELSI research and measures? We propose that the government and industrial sector in Japan play a much more proactive part in the regional and international growth of research into the wider risk assessment, social, health and environmental context of nanotechnologies, not simply try to borrow lessons from the West at a later date.
Show more
Keywords: Asbestos, bioethics, ELSI, nanotechnology, USA, Europe, Japan