Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kröller, J.; * | Behrens, F. | Marlinsky, V.V.
Affiliations: Institute of Physiology, Freie Universität, Arnimallee 22, 14195 Berlin, Germany
Note: [*] Reprint address: J. Kröller, Physiologisches Institut der Freien Universität, Arnimallee 22, 14195 Berlin, Germany. Tel: +49-30-838-2512; Fax: +49-30-838-2507.
Abstract: Experiments in two awake untrained squirrel monkeys were performed to study the velocity storage mechanism during fast rise of OKN slow phase velocity. This was done by testing the monkey’s capability to perform OKN in response to a stationary-appearing stroboscopically illuminated stripe pattern of a horizontally rotating drum. Nystagmus was initially elicited during constant illumination lasting between 0.6 and 25 s. The periodicity of the stripe pattern was 2.37°. When after the constant light the flash illumination was switched on again, two types of behavior could occur, depending on the length of the constant light interval (CLI): 1) when the CLI was shorter than a threshold value of 6.2 seconds, the OKN ceased under the flash stimulation. Then a “post-OKN” occurred that increased with the length of the CLIs, indicating that the intermittently illuminated pattern did not provoke fixation suppression of OKN aftereffects. 2) when the CLI was above threshold, the OKN continued under the flash light: it will he called “apparent movement OKN.” The threshold CLI between the type 1 and the type 2 response did not depend on drum velocities between 21.5°/s and 71.3°/s. The average gain of the apparent movement OKN was 0.83 ± 0.04; gain and stability of slow phase eye movement velocity did not deviate systematically from the usually elicited OKN. OKAN after apparent movement OKN did not deviate from OKAN after constantly illuminated moving patterns. In response to the OKN initiation by a constantly illuminated pattern up to pattern velocities of 100°/s, the OKN steady state gain was reached within the first 2 or 3 nystagmus beats. We ascribe the increase of the post-OKN with CLI and the existence of a threshold constant light interval to activity-accumulation in the common velocity-to-position integrator (velocity storage) of the brain stem. Loading of the velocity storage takes place after the OKN gain has already reached the steady-state value. Apparent movement OKN could also be elicited in guinea pigs that lack an effective smooth pursuit system. We suggest that apparent movement OKN is produced by mechanisms located in the brain stem.
Keywords: optokinetic nystagmus, OKN, onset, velocity storage, stroboscopic illumination, apparent movement, monkey
DOI: 10.3233/VES-1997-7603
Journal: Journal of Vestibular Research, vol. 7, no. 6, pp. 441-451, 1997
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl