Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 160.00Impact Factor 2024: 2.9
The Journal of Vestibular Research is a peer-reviewed journal that publishes experimental and observational studies, review papers, and theoretical papers based on current knowledge of the vestibular system, and letters to the Editor.
Authors: Maklad, Adel | Fritzsch, Bernd
Article Type: Research Article
Abstract: The endorgan-specific distribution of vestibular ganglion cells was studied in neonatal and postnatal rats and mice using indocarbocyanine dye (DiI) and dextran amines for retrograde and anterograde labeling. Retrograde DiI tracing from the anterior vertical canal labeled neurons scattered throughout the whole superior vestibular ganglion, with denser labeling at the dorsal and central regions. Horizontal canal neurons were scattered along the dorsoventral axis with more clustering toward the dorsal and ventral poles of this axis. Utricular ganglion cells occupied predominantly the central region of the superior vestibular ganglion. This utricular population overlapped with both the anterior vertical and horizontal canals' …ganglion cells. Posterior vertical canal neurons were clustered in the posterior part of the inferior vestibular ganglion. The saccular neurons were distributed in the two parts of the vestibular ganglion, the superior and inferior ganglia. Within the inferior ganglion, the saccular neurons were clustered in the anterior part. In the superior ganglion, the saccular neurons were widely scattered throughout the whole ganglion with more numerous neurons at the posterior half. Small and large neurons were labeled from all endorgans. Examination of the fiber trajectory within the superior division of the vestibular nerve showed no clear lamination of the fibers innervating the different endorgans. These results demonstrate an overlapping pattern between the different populations within the superior ganglion, while in the inferior ganglion, the posterior canal and saccular neurons show tighter clustering but incomplete segregation. This distribution implies that the ganglion cells are assigned for their target during development in a stochastic rather than topographical fashion. Show more
Keywords: vestibular ganglion organization, DiI and dextran amines tracing
DOI: 10.3233/VES-1999-9601
Citation: Journal of Vestibular Research, vol. 9, no. 6, pp. 387-399, 1999
Authors: Ivanenko, Y.P. | Viaud-Delmon, I. | Sémont, A. | Gurfinkel, V.S. | Berthoz, A.
Article Type: Research Article
Abstract: The aim of this study was to examine whether the chronic loss of vestibular function modifies perceptual and oculomotor responses during torso rotations in darkness. Subjects (4 patients with complete vestibular loss and 7 healthy volunteers) were seated on a rotating chair. Stimuli consisted of sinusoidal chair rotations (± 30 ∘ , 0.1 Hz and 0.011 Hz). We used 2 conditions: space stationary head (neck stimulation) and space stationary head and shoulders (torso stimulation). Horizontal eye deviations and slow component of eye movements were analysed. The results showed that eye movements and perception of head …motion in space during neck stimulation were similar to those during torso stimulation both in normal and labyrinthine-defective (LD) subjects. During low-frequency chair rotations (0.011 Hz) all subjects perceived illusory head or head and shoulder rotation in space (as if the lower part of the body was stationary relative to the room) and shifted their gaze in the direction of illusory head rotation. In these conditions there was no significant difference in eye movements between normal and LD subjects. During higher frequency chair rotations (0.1 Hz), LD subjects had significantly larger eye deviations as well as increases in the gain of the slow component of eye movements relative to normals. In these conditions patients mostly perceived illusory head or head and shoulder rotation in space while normal subjects mainly perceived the head as stationary in space. The results indicate that 1) neck and torso rotations can evoke similar ocular responses in LD subjects, 2) the chronic loss of vestibular function modifies the representation of axial body segment motion relative to space. Show more
Keywords: cervico-ocular response, torso rotations, vestibular system, labyrinthine-defective subjects
DOI: 10.3233/VES-1999-9602
Citation: Journal of Vestibular Research, vol. 9, no. 6, pp. 401-412, 1999
Authors: Böhmer, Andreas | Mast, Fred
Article Type: Research Article
Abstract: Assessing the subjective visual vertical, SVV, in a static upright position is an easy clinical test in which a deviation of some 10 ∘ from true vertical indicates an acute loss of unilateral (otolithic) vestibular function on the side to which the SVV is tilted. Because this deviation of the SVV is compensated during the following months, patients with chronic unilateral vestibular loss do no longer differ from normal subjects. This study presents an experimental set-up that allows for clear detection of compensated chronic loss of unilateral otolithic function by testing the SVV. 21 …normals and 17 unilaterally vestibular deafferentiated (UVD) patients (vestibular neurectomies) were first rotated on a human centrifuge about an earth vertical yaw axis through the midsagittal plane of the head (240 ∘ /s). This induced tilts of the gravito-inertial force (GIF) vectors, which differed at the two inner ears by 8 ∘ . During constant velocity rotation, the subjects were moved in pseudo-randomized steps laterally up to 16 cm apart from the rotation axis, inducing roll tilts of the GIF vectors up to 16 ∘ . Normal subjects set their SVV to pre-centrifugation values at positions with the midsagittal plane of their head close to the rotation axis, while chronic UVD patients indicated pre-centrifugation values during positions with the rotation axis 5.9 ± 2.5 cm paramedian on the side of the intact ear. Tilts of the GIF vectors shifted the SVV with a gain of 0.70 in normals and only 0.32 in UVD patients. Roll gains for laterally directed GIF vectors relative to the intact inner ear did not differ from medially directed roll gains in the UVD patients. The roll gains observed in this experimental set-up were lower than those observed with static body tilts or during eccentric rotation with a larger radius, which might be at least partially due to conflicting stimulation between otolithic and extra-vestibular cues. Show more
Keywords: utricle, otoliths, vestibular neurectomy, centrifuge, vestibular psychophysics
DOI: 10.3233/VES-1999-9603
Citation: Journal of Vestibular Research, vol. 9, no. 6, pp. 413-422, 1999
Authors: Keshner, E.A. | Hain, T.C. | Chen, K.J.
Article Type: Research Article
Abstract: The purpose of this study was to clarify the mechanisms controlling head and neck stabilization in the horizontal (yaw) and vertical (pitch) planes by changing the passive mechanics of the head-neck motor system. Angular velocities of the head and trunk in space were recorded in seated subjects during external perturbations of the trunk with pseudorandom sum-of-sines (SSN) stimuli. Four subjects in yaw and nine subjects in pitch actively stabilized their heads in the dark, and performed a mental distraction task in the dark both with and without a weight atop the head. In yaw, the behavior of the head was …found to change relatively little with added inertia. As adding inertia to a passive mechanical system should cause substantial changes in dynamics, we inferred that neural mechanisms were invoked to maintain the constant response dynamics. A mathematical model of head-neck control [11] was applied to predict the relative influence of the vestibulocollic and cervicocollic reflexes, and of inertia, stiffness, and viscosity. Using optimization methods to fit the model to experimental data, we identified stiffness and vestibulocollic reflex gain as the primary contributors to the control of head stabilization in space. In pitch, increasing inertia accentuated phase shifts at higher frequencies. Because our pitch model was insufficiently constrained, we only simulated responses due to passive mechanics. Model simulation predicted unstable head motion at all test frequencies. Subjects were able to compensate for trunk motion at most frequencies, however, suggesting that neural components were modulated to exert compensatory responses both with and without additional weight. Show more
Keywords: mathematical model, stiffness, inertia, neck reflexes
DOI: 10.3233/VES-1999-9604
Citation: Journal of Vestibular Research, vol. 9, no. 6, pp. 423-434, 1999
Authors: Speers, Rosemary A. | Shepard, Neil T. | Kuo, Arthur D.
Article Type: Research Article
Abstract: The Sensory Organization Test protocol of the EquiTest system (NeuroCom International, Clackamas Oregon) tests utilization of visual, vestibular, and proprioceptive sensors by manipulating the accuracy of visual and/or somatosensory inputs during quiet stance. In the standard Sensory Organization Test, both manipulation of sensory input (sway-referencing) and assessment of postural sway are based on ground reaction forces measured from a forceplate. The purpose of our investigation was to examine the use of kinematic measurements to provide a more direct feedback signal for sway-referencing and for assessment of sway. We compared three methods of sway-referencing: the standard EquiTest method based on ground …reaction torque, kinematic feedback based on servo-controlling to shank motion, and a more complex kinematic feedback based on servo-controlling to follow position of the center of mass (COM) as calculated from a two-link biomechanical model. Fifty-one normal subjects (ages 20–79) performed the randomized protocol. When using either shank or COM angle for sway-referencing feedback as compared to the standard EquiTest protocol, the Equilibrium Quotient and Strategy Score assessments were decreased for all age groups in the platform sway-referenced conditions (SOT 4, 5, 6). For all groups of subjects, there were significant differences in one or more of the kinematic sway measures of shank, hip, or COM angle when using either of the alternative sway-referencing parameters as compared to the standard EquiTest protocol. The increased sensitivities arising from use of kinematics had the effect of amplifying differences with age. For sway-referencing, the direct kinematic feedback may enhance ability to reduce proprioceptive information by servo-controlling more closely to actual ankle motion. For assessment, kinematics measurements can potentially increase sensitivity for detection of balance disorders, because it may be possible to discriminate between body sway and acceleration and to determine the phase relationship between ankle and hip motion. Show more
Keywords: postural sway, joint kinematics, dynamic posturography, age effects
DOI: 10.3233/VES-1999-9605
Citation: Journal of Vestibular Research, vol. 9, no. 6, pp. 435-444, 1999
Authors: Di Girolamo, S. | Di Nardo, W. | Cosenza, A. | Ottaviani, F. | Dickmann, A. | Savino, G.
Article Type: Research Article
Abstract: The role of vision in postural control is crucial and is strictly related to the characteristics of the visual stimulus and to the performance of the visual system. The purpose of this investigation was to evaluate the effects of chronically reduced visual cues upon postural control in patients affected by Congenital Nystagmus (CN). These patients have developed since birth a postural strategy mainly based on vestibular and somatosensorial cues. Fifteen patients affected by CN and 15 normal controls (NC) were enrolled in the study and evaluated by means of dynamic posturography. The overall postural control in CN patients was impaired …as demonstrated by the equilibrium score and by the changes of the postural strategy. This impairment was even more enhanced in CN than in NC group when somatosensorial cues were experimentally reduced. An aspecific pattern of visual impairment and a pathological composite score were also present. Our data outline that in patients affected by CN an impairment of the postural balance is present especially when the postural control relies mainly on visual cues. Moreover, a decrease in accuracy of the somatosensory cues has a proportionally greater effect on balance than it has on normal subjects. Show more
Keywords: congenital nystagmus, postural control, dynamic posturography
DOI: 10.3233/VES-1999-9606
Citation: Journal of Vestibular Research, vol. 9, no. 6, pp. 445-451, 1999
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl