Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Heinen, S.J.a; * | Oh, D.K.a; b | Keller, E.L.a; b
Affiliations: [a] Smith-Kettlewell Eye Research Institute, 2232 Webster, San Francisco, California | [b] Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California
Note: [*] Reprint address: Dr. S.J. Heinen, Smith-Kettlewell Eye Research Institute, 2232 Webster Street, San Francisco, CA 94115.
Abstract: Electrical stimulation in the monkey vestibulocerebellum has previously been shown to produce ocular nystagmus, but large stimulating current values were used. Using long duration (⩽10-second) stimulus pulse trains and low current values (<50 μA), we studied the nystagmus evoked by microstimulation in the uvular/nodular regions of the cerebellum. In doing this, we found quantitative differences in the nystagmus evoked from these two regions. Stimulation of the nodulus typically produced a vigorous nystagmus with a contralateral slow phase and a prolonged afternystagmus in the same direction. In contrast, stimulation of the uvula typically produced a regular ipsilateral nystagmus pattern with a very short, if any, afternystagmus in the same direction. In addition, at some stimulation sites in the uvula we observed an adaptation in the slow phase eye velocity during the time that the stimulation remained on. This effect could result in a secondary nystagmus, with a slow phase velocity direction opposite to that first evoked by the stimulation, followed by a prolonged afternystagmus in the direction of the secondary nystagmus at stimulus offset. The nystagmus evoked by these cerebellar stimulations differs from both natural nystagmus produced by large field visual motion and from the nystagmus produced by electrical stimulation of the nucleus of the optic tract. The nystagmus produced by uvular and nodular stimulation shows a shorter latency and a more rapid slow phase eye velocity buildup. The uvula stimulations also showed a much shorter afternystagmus. Also, the same nystagmus was evoked whether the animal was in a lighted or dark surround. These characteristics and recent single-unit recording studies in the uvula seem to suggest that the uvula acts not as a direct input to the velocity storage mechanism, but instead perhaps as part of an internal regulator for balance between the bilateral vestibular nuclei which are normally part of the nystagmus response. On the other hand, the nodulus, with its prolonged afternystagmus in the same direction as the evoked nystagmus, may be involved as a part of the velocity storage mechanism.
Keywords: cerebellum, uvula, nodulus, vestibular nuclei, optokinetic nystagmus
DOI: 10.3233/VES-1992-2306
Journal: Journal of Vestibular Research, vol. 2, no. 3, pp. 235-245, 1992
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl