Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Clarke, A.H.
Affiliations: ENT Department, Campus Benjamin Franklin, Charité Medical School, Berlin, Germany. E-mail: andrew.clarke@charite.de
Abstract: The extensive remains of large sauropods, excavated in the Upper Jurassic layers of the Tendaguru region of Tanzania, East Africa by Janensch [15], include an intact fossil cast of a vestibular labyrinth and an endocast of the large Brachiosaurus brancai. The approximately 150 million year old labyrinth cast demonstrates clearly a form and organisation congruent in detail to those of extant vertebrate species. Besides the near-orthogonal arrangement of semicircular canals (SCCs), the superior and inferior branches of the vestibulo-acoustic nerve, the endolymphatic duct, the oval and round windows, and the cochlea can be identified. The orientation of the labyrinth in the temporal bone is also equivalent to that of many extant vertebrates. Furthermore, the existence of the twelve cranial nerves can be identified from the endocast. The present study was initiated after the photogrammetric measurement of the skeleton volume of B. brancai [13] yielded a realistic estimate of body mass (74.42 metric tons). Dimensional analysis shows that body mass and average SCC dimensions of B. brancai generally fit with the allometric relationship found in previous studies of extant species. However, the anterior SCC is significantly larger than the allometric relationship would predict. This would indicate greater sensitivity, supporting the idea that the behavioural repertoire must have included much slower pitch movements of the head. These slower movements would most likely have involved flexion of the neck, rather than head pitching about the atlas joint. Pursuing the relationship between body mass and SCC dimensions further, the SCC frequency response is estimated by scaling up from the SCC dimensions of the rhesus monkey; this yields a range between 0.008–26 Hz, approximately one octave lower than for humans.
DOI: 10.3233/VES-2005-15202
Journal: Journal of Vestibular Research, vol. 15, no. 2, pp. 65-71, 2005
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl