Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: 6th NASA Symposium on The Role of the Vestibular Organs in the Exploration of Space, Portland, OR, USA, September 30–October 3, 2002
Article type: Research Article
Authors: Wiederhold, Michael L. | Harrison, Jeffrey L. | Gao, Wenyuan
Affiliations: Department Otolaryngology – Head & Neck Surgery, University of Texas Health Science Center at San Antonio, MSC7777 San Antonio, TX 78229-3900, USA
Correspondence: [*] Corresponding author: M.L. Wiederhold PhD. Current address: Department Physiology, UTHSCSA, MSC7756, San Antonio, TX 78229-3900, USA. Tel.: +1 210 567 4401; Fax: +1 210 567 4410; E-mail: wiederhold@uthscsa.edu
Note: [] Current address: Audie L. Murphy Veterans Administration Hospital, San Antonio, TX, USA
Note: [] Current address: Second Military Medical University, Shanghai, China
Abstract: The otoliths of adult animals do not change significantly during space flight. However, during the period when otoliths are first developing, rearing in space produces significantly larger otoliths. Conversely, animals reared on a centrifuge have smaller than normal otoliths. To identify a critical period during development for gravitational effects on otolith growth, fertilized zebrafish (Danio rerio) eggs were reared on a centrifuge for 1 week. The fine structure of their inner ear during development was studied by both light- and transmission electron microscopy. By 16 hours after fertilization (1-g, at 28.5°C), precursors of the otoliths are seen but no sign of a sensory epithelium is present. Mature hair cells, appearing capable of mechanotransduction, are not seen until between 48 and 72 hours after fertilization. Zebrafish reared at 3-g from 1 to 7 days after fertilization exhibit significantly slower otolith growth than did 1-g controls. Fish exposed to 3-g only from 12–36 h after fertilization had slightly smaller otoliths than 1-g controls, but this difference was not significant. Animals exposed to 3-g from 36h to 7d after fertilization did have significantly smaller otoliths. If the fish use their hair cells to assess otolith weight in a regulatory role, the hair cells would have to be functional. Thus the earliest stage zebrafish, which were not significantly affected by centrifugation, probably did not have an adequate means of sensing otolith weight to "correct" for the excess weight. (Supported by NASA: NAG2-952 and NAG10-0180)
Keywords: otolith, hair cell, gravity, hypergravity, microgravity, zebrafish
DOI: 10.3233/VES-2003-134-605
Journal: Journal of Vestibular Research, vol. 13, no. 4-6, pp. 205-214, 2003
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl