Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: DiZio, Paul; * | Lackner, James R.
Affiliations: Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, MS033, Waltham, MA 02454, USA
Correspondence: [*] Corresponding author: Paul DiZio, Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, MS033, Waltham, MA 02454, USA. Tel.: +1 781 736 2033; E-mail: dizio@brandeis.edu
Abstract: As a countermeasure to the debilitating physiological effects of weightlessness, astronauts could live continuously in an artificial gravity environment created by slow rotation of an entire spacecraft or be exposed to brief daily "doses" in a short radius centrifuge housed within a non-rotating spacecraft. A potential drawback to both approaches is that head movements made during rotation may be disorienting and nauseogenic. These side effects are more severe at higher rotation rates, especially upon first exposure. Head movements during rotation generate aberrant vestibular stimulation and Coriolis force perturbations of the head-neck motor system. This article reviews our progress toward distinguishing vestibular and motor factors in side effects of rotation, and presents new data concerning the rates of rotation up to which adaptation is possible. We have studied subjects pointing to targets during constant velocity rotation, because these movements generate Coriolis motor perturbations of the arm but do not involve unusual vestibular stimulation. Initially, reaching paths and endpoints are deviated in the direction of the transient lateral Coriolis forces generated. With practice, subjects soon move in straighter paths and land on target once more. If sight of the arm is permitted, adaptation is more rapid than in darkness. Initial arm movement trajectory and endpoint deviations are proportional to Coriolis force magnitude over a range of rotation speeds from 5 to 20 rpm, and there is rapid, complete motor adaptation at all speeds. These new results indicate that motor adaptation to high rotation rates is possible. Coriolis force perturbations of head movements also occur in a rotating environment but adaptation gradually develops over the course of many head movements.
Keywords: coriolis force, artificial gravity, disorientation, motion sickness, sensorimotor, vestibular, head, arm
DOI: 10.3233/VES-2003-125-609
Journal: Journal of Vestibular Research, vol. 12, no. 5-6, pp. 291-299, 2003
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl