Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Lee, Wen-Chuan | Wu, Jong-Wuu
Affiliations: Department of International Business, Chang Jung Christian University, Tainan, Taiwan, R.O.C | Department of Applied Mathematics, National Chiayi University, Chiayi, Taiwan, R.O.C
Note: [] Corresponding author. Jong-Wuu Wu, Department of Applied Mathematics, National Chiayi University, 300 Syuefu RD., Chiayi City 60004, Taiwan, R.O.C. E-mail: jwwu@mail.ncyu.edu.tw
Abstract: The recent paper by Parchami et al. [2] proposes an open problem: Let $\( \hat{\tilde{C\!}}_p = T\left( {\frac{{a_u - c_l }} {{6s}},\frac{{b_u - b_l }} {{6s}},\frac{{c_u - a_l }} {{6s}}} \right)\)$ be a point estimate of fuzzy process capability index $\(\tilde{C}_p\)$ as definition of Parchami et al. [2], where $\( s = \sqrt {\frac{1}{{n - 1}}\sum\limits_{i = 1}^n {\left( {x_i - \bar x} \right)^2}}\)$. Is it true that: $\( \mathop {\lim }\limits_{n \to \infty } \left[ {\hat{\tilde{C\!}}_{p \otimes } \sqrt {\frac{{\chi _{n - 1,\alpha /2}^2 }} {{n - 1}}} ,\hat{\tilde{C\!}}_{p \otimes } \sqrt {\frac{{\chi _{n - 1,1 - \alpha /2}^2 }} {{n - 1}}}} \right] = \left\{ {\hat{\tilde{C\!}}_p } \right\}?\)$ We modify their open problem and prove that “$\( \mathop {\lim }\limits_{n \to \infty } \left[ {\hat{\tilde{C\!}}_{p \otimes } \sqrt {\frac{{\chi _{n - 1,\alpha /2}^2 }} {{n - 1}}} ,\hat{\tilde{C\!}}_{p \otimes } \sqrt {\frac{{\chi _{n - 1,1 - \alpha /2}^2 }} {{n - 1}}} } \right] \cong \left\{ {\hat{\tilde{C\!}}_p } \right\}\)$ {for large} n” is true.
Keywords: Fuzzy process capability index, fuzzy confidence interval, chi-square distribution
DOI: 10.3233/IFS-2012-0512
Journal: Journal of Intelligent & Fuzzy Systems, vol. 24, no. 1, pp. 1-3, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl