Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Shehzadi, Mahama | Fahmi, Aliyaa; * | Abdeljawad, Thabetc | Khan, Azizc
Affiliations: [a] Department of Mathematics, The University of Faisalabad, Faisalabad, Pakistan | [b] Department of Medical Research, China Medical University, Taichung, Taiwan | [c] Department of Mathematics and Sciences, Prince Sultan University, Riyadh, Saudia Arabia | [d] Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Garankuwa, Medusa, South Africa
Correspondence: [*] Corresponding author. Aliya Fahmi, Department of Mathematics, The University of Faisalabad, Faisalabad 38000, Pakistan. E-mail: aliyafahmi@gmail.com.
Abstract: This paper investigates the detailed analysis of linear diophantine fuzzy Aczel-Alsina aggregation operators, enhancing their efficacy and computational efficiency while aggregating fuzzy data by using the fuzzy C-means (FCM) method. The primary goal is to look at the practical uses and theoretical foundations of these operators in the context of fuzzy systems. The aggregation process is optimised using the FCM algorithm, which divides data into clusters iteratively. This reduces computer complexity and enables more dependable aggregation. The mathematical underpinnings of Linear Diophantine Fuzzy Aczel-Alsina aggregation operators are thoroughly examined in this study, along with an explanation of their purpose in handling imprecise and uncertain data. It also investigates the integration of the FCM method, assessing its impact on simplifying the aggregation procedure, reducing algorithmic complexity, and improving the accuracy of aggregating fuzzy data sets. This work illuminates these operators performance and future directions through extensive computational experiments and empirical analysis. It provides an extensive framework that shows the recommended strategy’s effectiveness and use in a variety of real-world scenarios. We obtain our ultimate outcomes through experimental investigation, which we use to inform future work and research. The purpose of the study is to offer academics and practitioners insights on how to improve information fusion techniques and decision-making processes.
Keywords: Linear diophantine fuzzy set, Aczel-Alsina operational laws, linear diophantine fuzzy Aczel-Alsina aggregation operators, fuzzy C-means algorithm
DOI: 10.3233/JIFS-238716
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-22, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl