Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Su, Na; * | Wang, Anqi | Zhang, Lingzhi
Affiliations: College of Intelligent Equipment, Shandong University of Science and Technology, Taian, China
Correspondence: [*] Corresponding author. Na Su, College of Intelligent Equipment, Shandong University of Science and Technology, Tai’an, Shandong Province, China. E-mail: susu198@126.com.
Abstract: Aspect Sentiment Triplet Extraction (ASTE) aims to extract aspect terms, sentiment polarity and opinion terms explaining the reason for the sentiment from a sentence in the form of triplets. Many existing studies model the context by graph neural networks to learn relevant information from the generated graphs. However, some sentences may have syntactic errors or lack significant grammar, which may lead to poor results on the dataset of the model. In this paper, we propose the Fusing Semantic and Syntactic Information for Aspect Sentiment Triplet Extraction (FSSI) model, which incorporates both syntactic structure and semantic relevance in the context. Specifically, we construct a syntactic graph convolutional network to obtain comprehensive syntactic structure information and a semantic graph convolutional network to obtain global semantic relevance of sentences using the self-attention mechanism. Furthermore, we concatenate the graph representations generated by the two graph convolution networks to obtain the final enhanced representation. Finally, we apply an effective inference strategy to extract triplets. Extensive experimental results on benchmark datasets show that our model outperforms state-of-the-art approaches.
Keywords: Aspect sentiment triplet extraction, graph convolutional network, sentiment analysis
DOI: 10.3233/JIFS-238218
Journal: Journal of Intelligent & Fuzzy Systems, vol. 47, no. 3-4, pp. 235-244, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl