Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhou, Ning; * | Liu, Bin | Cao, Jiawei
Affiliations: School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou, China
Correspondence: [*] Corresponding author. Ning Zhou, School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China. E-mail: zhouning@lzjtu.edu.cn.
Abstract: Facial expression recognition has long been an area of great interest across a wide range of fields. Deep learning is commonly employed in facial expression recognition and demonstrates excellent performance in large-sample classification tasks. However, deep learning models often encounter challenges when confronted with small-sample expression classification problems, as they struggle to extract sufficient relevant features from limited data, resulting in subpar performance. This paper presents a novel approach called the Multi-CNN Logical Reasoning System, which is based on local area recognition and logical reasoning. It initiates the process by partitioning facial expression images into two distinct components: eye action and mouth action. Subsequently, it utilizes logical reasoning based on the inherent relationship between local actions and global expressions to facilitate facial expression recognition. Throughout the reasoning process, it not only incorporates manually curated knowledge but also acquires hidden knowledge from the raw data. Experimental results conducted on two small-sample datasets derived from the KDEF and RaFD datasets demonstrate that the proposed approach exhibits faster convergence and higher prediction accuracy when compared to classical deep learning-based algorithms.
Keywords: Facial expression recognition, logic reasoning, few-shot learning, local area recognition
DOI: 10.3233/JIFS-233988
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 9431-9447, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl