Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Manivannan, K.a | Sathiamoorthy, S.b; *
Affiliations: [a] Arignar Anna Government Arts and Science College, Villupuram, India | [b] Annamalai University PG Extension Centre, Villupuram, India
Correspondence: [*] Corresponding author. Dr. S. Sathiamoorthy, Annamalai University PG Extension Centre, Villupuram, India. E-mail: ks_sathia@yahoo.com.
Abstract: In the last decades, Tuberculosis (TB) can be considered a serious illness affecting people over the globe and it leads to mortality when left untreated. Chest X-Ray (CXR) is the topmost selection for the recognition of pulmonary diseases in hospitals since it can be cost-efficient and easily available in many nations. But, manual CXR image screening is a huge load for radiologists, which results in a maximum inter-observer discrepancy rate. At present, Computer-Aided Detection (CAD) is a powerful imaging equipment for detecting and screening dangerous ailments. In recent times, Deep Learning (DL) based CAD schemes have demonstrated positive outcomes in the recognition of TB diseases. This study introduces an Egret Swarm Optimization Algorithm with Deep Feature Fusion based Tuberculosis Classification (ESOA-DFFTC) technique on CXR Images. The presented ESOA-DFFTC technique utilizes feature fusion and tuning processes for the classification of TB. To accomplish this, the ESOA-DFFTC model first exploits the Gaussian Filtering (GF) approach for image denoising purposes. Next, the ESOA-DFFTC model performs a feature fusion process using three DL models namely ResNeXt-50, MobileNetv2, and Xception. To enhance the achievement of the DL models, the ESOA-based hyperparameter optimizer is implemented in the study. For TB classification, the ESOA-DFFTC methodology uses an Arithmetic Optimization Algorithm (AOA) with Weight-Dropped Long Short-Term Memory (WDLSTM) methodology. The investigational output of the ESOA-DFFTC system was examined on a benchmark medical imaging dataset. A wide comparative investigation stated the greater achievement of the ESOA-DFFTC system over other current algorithms.
Keywords: Computer-aided diagnosis, machine learning, Tuberculosis, chest X-Ray images, feature fusion, Metaheuristics
DOI: 10.3233/JIFS-233975
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 10335-10347, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl