Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ashwin Shenoy, M.a; b; * | Thillaiarasu, N.a
Affiliations: [a] School of Computing and Information Technology, REVA University, Karnataka, India | [b] Department of Computer Science and Engineering, NMAM Institute of Technology-Affiliated to NITTE (Deemed to be University), India
Correspondence: [*] Corresponding author. M. Ashwin Shenoy, E-mail: ashwinshenoy14@gmail.com.
Abstract: Automated identification of human activities remains a complex endeavor, particularly in unique settings like temple environments. This study focuses on employing machine learning and deep learning techniques to analyze human activities for intelligent temple surveillance. However, due to the scarcity of standardized datasets tailored for temple surveillance, there is a need for specialized data. In response, this research introduces a pioneering dataset featuring Eight distinct classes of human activities, predominantly centered on hand gestures and body postures. To identify the most effective solution for Human Activity Recognition (HAR), a comprehensive ablation study is conducted, involving a variety of conventional machine learning and deep learning models. By integrating YOLOv4’s robust object detection capabilities with ConvLSTM’s ability to model both spatial and temporal dependencies in spatio-temporal data, the approach becomes capable of recognizing and understanding human activities in sequences of images or video frames. Notably, the proposed YOLOv4-ConvLSTM approach emerges as the optimal choice, showcasing a remarkable accuracy of 93.68%. This outcome underscores the suitability of the outlined methodology for diverse HAR applications in temple environments.
Keywords: Dataset, machine learning, deep learning, YOLOv4, ConvLSTM, Human Activity Recognition
DOI: 10.3233/JIFS-233919
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 11217-11232, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl