Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kaijun, Zhao; *
Affiliations: Department of Physical Education, SuZhou University, Suzhou, Anhui, China
Correspondence: [*] Corresponding author. Zhao Kaijun, Department of Physical Education, SuZhou University, Suzhou, Anhui 234000, China. E-mail: zkj@ahszu.edu.cn.
Abstract: To enhance the psychological resilience of athletes, a method for evaluating the psychological resilience of High-intensity Interval Training (HIIT) athletes based on evolutionary neural networks is studied. From the six criteria of frustration coping, personal characteristics, self-promotion, self-regulation, internal protection and external protection, the evaluation index of psychological resilience of athletes in sports High-intensity Interval Training is selected; the audition indicators are qualitatively analyzed according to the principle of indicator selection, and the indicators that do not meet the requirements are eliminated; Cluster analysis and coefficient of variation analysis are used to carry out quantitative analysis on the remaining evaluation indicators after qualitative analysis; the indicators after quantitative analysis are improved, to build the assessment index system of psychological resilience of athletes in high-intensity sports training. The Back Propagation (BP) neural network is optimized by a genetic algorithm, and the evolutionary neural network is constructed. The index data set is input into the evolutionary neural network as a sample, and the index weight value is output through training. The evaluation result and corresponding evaluation grade are determined based on the index weight value and membership degree. The experimental results show that when the number of hidden layers is 3, the calculation of evaluation index weights is the best; The weight of personal traits obtained from the evaluation results is the highest (0.206), while the weight of external protection is the lowest (0.151), and the evaluation results are basically consistent with the expert results. The above results show that this method can accurately evaluate the psychological resilience of athletes and significantly enhance their psychological resilience.
Keywords: Evolutionary neural network, evaluation of psychological resilience, index system construction, genetic algorithm, weight calculation
DOI: 10.3233/JIFS-233299
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 1, pp. 723-737, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl