Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Cao, Jiangzhong | Liao, Siyi; *
Affiliations: School of Information Engineering, Guangdong University of Technology, Guangzhou, China
Correspondence: [*] Corresponding author. Siyi Liao, School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, China. E-mail: 15301053074@163.com.
Abstract: 3D shape recognition is a critical research topic in the field of computer vision, attracting substantial attention. Existing approaches mainly focus on extracting distinctive 3D shape features; however, they often neglect the model’s robustness and lack refinement in deep features. To address these limitations, we propose the point-view fusion attention network that aims to extract a concise, informative, and robust 3D shape descriptor. Initially, our approach combines multi-view features with point cloud features to obtain accurate and distinguishable fusion features. To effectively handle these fusion features, we design a dual-attention convolutional network which consists of a channel attention module and a spatial attention module. This dual-attention mechanism greatly enhances the generalization ability and robustness of 3D recognition models. Notably, we introduce a strip-pooling layer in the channel attention module to refine the features, resulting in improved fusion features that are more compact. Finally, a classification process is performed on the refined features to assign appropriate 3D shape labels. Our extensive experiments on the ModelNet10 and ModelNet40 datasets for 3D shape recognition and retrieval demonstrate the remarkable accuracy and robustness of the proposed method.
Keywords: 3D Shape recognition, multimodal feature fusion, feature refinement, attention mechanism
DOI: 10.3233/JIFS-232800
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8119-8133, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl