Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Liu, Junhui; * | Li, Guozhu | Gao, Chen
Affiliations: School of Mechanical and Material Engineering, Xi’an University, Xi’an, Shaanxi, China
Correspondence: [*] Corresponding author. Junhui Liu, School of Mechanical and Material Engineering, Xi’an University, Xi’an, 710065, Shaanxi, China. E-mail: ljhui@xawl.edu.cn.
Abstract: In this study, we are concerned with the optimization of fuzzy clustering (Fuzzy C-Means) on the basis of a collection of distributed datasets without violating data confidentiality and security. The optimization of fuzzy clusters is realized using the differential evolution algorithm in a federated learning environment. Fuzzy clustering plays an important role in revealing the underlying structure of a given dataset. However, traditional iterative method is easy to get stuck at local optimum. With the growing concerning on data confidentiality and security, how to reveal the underlying structure of the data that are stored locally across different sites is becoming an urgent problem. In order to overcome these two obstacles, we propose a federated differential evolution algorithm to realize fuzzy clustering. We augment the well-known differential evolution algorithm such that it can work in a federated learning environment to ensure local data privacy. The design practice of the federated differential evolution is elaborated on by highlighting its effectiveness in finding the optimal fuzzy clusters on the basis of distributed datasets. The performance of the proposed method is compared with traditional fuzzy clustering algorithm. Experimental studies completed on a series of real-world datasets coming from machine learning repository are reported to demonstrate the superiority of the proposed algorithm.
Keywords: Differential evolution, horizontal federated learning, fuzzy clustering, global optimization
DOI: 10.3233/JIFS-232709
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 5853-5860, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl