Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Liu, Cong; * | She, Wenhao
Affiliations: College of Mechanical Engineering, Yancheng Institute of Technology, Jiangsu, China
Correspondence: [*] Corresponding author. Cong Liu, College of Mechanical Engineering, Yancheng Institute of Technology, Jiangsu, China. E-mail: liucong12601@126.com.
Abstract: Defect detection in mobile phone cameras constitutes a critical aspect of the manufacturing process. Nonetheless, this task remains challenging due to the complexities introduced by intricate backgrounds and low-contrast defects, such as minor scratches and subtle dust particles. To address these issues, a Bilateral Feature Fusion Network (BFFN) has been proposed. This network incorporates a bilateral feature fusion module, engineered to enrich feature representation by fusing feature maps from multiple scales. Such fusion allows the capture of both fine and coarse-grained details inherent in the images. Additionally, a Self-Attention Mechanism is deployed to garner more comprehensive contextual information, thereby enhancing feature discriminability. The proposed Bilateral Feature Fusion Network has been rigorously evaluated on a dataset of 12,018 mobile camera images. Our network surpasses existing state-of-the-art methods, such as U-Net and Deeplab V3+, particularly in mitigating false positive detection caused by complex backgrounds and false negative detection caused by slight defects. It achieves an F1-score of 97.59%, which is 1.16% better than Deeplab V3+ and 0.99% better than U-Net. This high level of accuracy is evidenced by an outstanding precision of 96.93% and recall of 98.26%. Furthermore, our approach realizes a detection speed of 63.8 frames per second (FPS), notably faster than Deeplab V3+ at 57.1 FPS and U-Net at 50.3 FPS. This enhanced computational efficiency makes our network particularly well-suited for real-time defect detection applications within the realm of mobile camera manufacturing.
Keywords: Defect detection, image segmentation, feature fusion, deep learning, mobile camera
DOI: 10.3233/JIFS-232664
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 1, pp. 2585-2594, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl