Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Qia | Lu, TongWeib; *
Affiliations: [a] School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan, China | [b] Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, China
Correspondence: [*] Corresponding author. TongWei Lu, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, China. E-mail: lutongwei@wit.edu.cn.
Abstract: Recently, with the emergence of many image editing tools (photoshop, Topaz studio, etc.), the authenticity of images has been severely challenged. However, the performance of some existing traditional feature extraction methods and detection methods based on convolutional neural network (CNN) is poor, and the information provided by the features extracted from the network is limited and single. In this paper, an end-to-end ringed residual U-Net is proposed to detect image splicing forgery by blending features of non-natural regions. Some regions with significant differences from the image background are defined as non-natural regions(such as the irregular border at the splicing of images). In this paper, a feature enhancement module for non-natural regions is constructed, which the image through the pooling of four different scales, and these features are then combined with the original image and input to the backbone network for processing, aiming to highlight regions of the image that differ significantly from the background. Therefore, after adding the feature enhancement module for non-natural regions to the end-to-end ring residual U-Net, more attention will be paid to the tampering regions in the feature extraction stage, image manipulation detection and localization will also become more accurate. Compared with some mainstream methods, this method achieves better performance on the three standard datasets(CASIA2.0, NIST2016, COLUMBIA). In addition, it has excellent robustness under JPEG compression attack and noise corruption attack.
Keywords: Convolutional neural network, image splicing forgery detection, non-natural regions
DOI: 10.3233/JIFS-232025
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 7447-7459, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl