Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Yehuaa; * | Zhang, Yanb
Affiliations: [a] Labour Union, Shunde Polytechnic, Foshan, China | [b] School of Food and Safety, Hainan University, Haikou, China
Correspondence: [*] Corresponding author. Yehua Zhang, Labour Union, Shunde Polytechnic, Foshan 528000, China. E-mail: 10144@sdpt.edu.cn.
Abstract: With the advancement of modern medical concepts, the beneficial effects of music on human health have gradually become accepted, and the corresponding music therapy has gradually become a new research direction that has received much attention in recent years. However, folk music has certain peculiarities that lead to the fact that there is no efficient way of selecting repertoire that can be carried out directly throughout the repertoire selection. This paper combines deep learning theory with ethnomusic therapy based on previous research and proposes a deep learning-based approach to ethnomusic therapy song selection. Since the feature extraction process in the traditional sense has insufficient information on each frame, excessive redundancy, inability to process multiple frames of continuous music signals containing relevant music features and weak noise immunity, it increases the computational effort and reduces the efficiency of the system. To address the above shortcomings, this paper introduces deep learning methods into the feature extraction process, combining the feature extraction process of the Deep Auto-encoder (DAE) with the music classification process of Gaussian mixture model, which forms a new DAE-GMM music classification model. Finally, in terms of music therapy selection, this paper compares the music selection method based on co-matrix and physiological signal with the one in this paper. From the theoretical and simulation plots, it can be seen that the method proposed in this paper can achieve both good music classifications from a large number of music and further optimize the process of music therapy song selection from both subjective and objective aspects by considering the therapeutic effect of music on patients. Through this article research results found that the depth of optimization feature vector to construct double the accuracy of the classifier is higher, in addition, compared with the characteristics of the original optimization classification model, using the gaussian mixture model can more accurately classify music, the original landscape “hometown” score of 0.9487, is preferred, insomnia patients mainly ceramic flute style soft tone, without excitant, low depression, have composed of nourishing the heart function.
Keywords: Ethnic music, music therapy, repertoire selection, deep learning
DOI: 10.3233/JIFS-230893
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 2, pp. 5405-5414, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl