Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Dey, Aniruddhaa; * | Ghosh, Manasb | Chowdhury, Shiladityac | Kahali, Sayand
Affiliations: [a] Department of Computer Science & Engineering, MSIT, Kolkata, India | [b] Department of Computer Application, RCCIIT, Kolkata, India | [c] Department of Computer Application, Techno India, Kolkata, India | [d] TCS-Research & Innovation, Kolkata, India
Correspondence: [*] Corresponding author. Aniruddha Dey, Department of Computer Science & Engineering, MSIT, Kolkata, India. E-mail: anidey007@gmail.com.
Abstract: This paper presents a novel decision-making method for face recognition where the features were extracted from the original image fused with its corresponding true and partial diagonal images. To extract features, we adopted the generalized two-dimensional FLD (G2DFLD) feature extraction technique. The feature vectors from a test image are given as input to neural network-based classifier. It is trained with the feature vectors of original image and diagonally fused images and thereby the merit weights with respect to different classes were generated. To address the factors that affect the face recognition accuracy and uncertainty related to raw biometric data, a fuzzy score for each of the classes is generated by treating a type-2 fuzzy set. This type-2 fuzzy set is formed by the feature vectors of both the diagonally fused training samples and the test image of the respective classes. A concluding score for each of the classes under consideration is computed by fusing complemented merit weight with the complemented fuzzy score. These class-wise concluding scores are considered in the face recognition process. In this study, the well-known face databases (AT&T, UMIST and CMU-PIE) are used to evaluate the performance of the proposed method. The experimental results illustrate the fact that the proposed method has exhibited superior classification precision as compared with other state-of-art methods. Our T2FMFImgF method achieves highest face recognition accuracies of 99.41%, 98.36% and 89.80% in case of AT&T, UMIST and CMU-PIE (with expression), respectively while for CMU-PIE (with Light) the highest recognition accuracy is 97.957%. In addition to it, the presented method is quite successful in fusing and classifying textural information from the original and partial diagonal images by integrating them with type-2 fuzzy set-based treatment.
Keywords: Image-level fusion, confidence factor, face recognition, fuzzy type-2
DOI: 10.3233/JIFS-224288
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 1, pp. 743-761, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl