Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kayyidavazhiyil, Abhilash; *
Affiliations: Department of Computer Science and Mathematics, LiverPool JohnMoore University, UK
Correspondence: [*] Corresponding author. Abhilash Kayyidavazhiyil, Research Scholar, Department of Computer Science and Mathematics, LiverPool JohnMoore University, UK. E-mail: abhilashkv@ieee.org.
Abstract: Prediction of malicious attacks and monitoring of network behaviour is significant for providing security and mitigating the loss of credential information. In order to monitor network traffic and identify different types of attacks in the network, numerous existing algorithms have been provided for classifying unauthorized access from the authorized access. However, the traditional techniques have faced complications in satisfying the accuracy while making predictions of malicious activities. Detection accuracy have been addressed as a drawback which hinders in making appropriate identification of threats. In order to overcome such challenges, the proposed work is designed with effective IDS mechanism for detecting and classifying the attacks taken from the UNSW-NB15 and NSL-KDD dataset. IDS (Intrusion Detection System) implementation is accomplished with three stages such as pre-processing is the initial phase in which scaling re-sizing of all images to similar width and height. Process of checking missing values reduces the computational complexities and enhances accuracy. Second stage is the novel feature-selection process accomplished by E-GSS (Enhanced Genetic Sine Swarm Intelligence) for selecting significant and optimal features. Finally, classification is the final phase in which intrusion is classified using novel DMH-ANN (Deep Meta-Heuristics Artificial Neural Network) which is internally being compared to three classifiers such as RF (Random Forest), NB (Naïve Bayes) and XG-Boost (Extreme Gradient). Experimental evaluation is carried out with the performance metrics such as accuracy, precision and recall and compared with existing algorithms for exhibiting the effectiveness of the proposed model. The research outcome reveals its efficiency in detecting and classifying attacks with greater accuracy.
Keywords: Intrusion detection, UNSW-NB15 dataset, NSL-KDD, Genetic Sine Swarm, Metaheuristic ANN, Naïve Bayes, XG-Boost, random forest
DOI: 10.3233/JIFS-224283
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 10243-10265, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl