Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Lin, Tao | Chen, Biao; * | Wang, Ruixia | Zhang, Yabo | Shi, Yu | Jiang, Nan
Affiliations: School of Computer Science & Information Engineering, Shanghai Institute of Technology, Shanghai, China
Correspondence: [*] Corresponding author. Biao Chen, School of Computer Science & Information Engineering, Shanghai Institute of Technology, Shanghai, China. E-mail: kuki1015@126.com.
Abstract: Vision-based Continuous Sign Language Recognition (CSLR) is a challenging and weakly supervised task aimed at segmenting sign language from weakly annotated image stream sequences for recognition. Compared with Isolated Sign Language Recognition (ISLR), the biggest challenge of this work is that the image stream sequences have ambiguous time boundaries. Recent CSLR works have shown that the visual-level sign language recognition task focuses on image stream feature extraction and feature alignment, and overfitting is the most critical problem in the CSLR training process. After investigating the advanced CSLR models in recent years, we have identified that the key to this study is the adequate training of the feature extractor. Therefore, this paper proposes a CSLR model with Multi-state Feature Optimization (MFO), which is based on Fully Convolutional Network (FCN) and Connectionist Temporal Classification (CTC). The MFO mechanism supervises the multiple states of each Sign Gloss in the modeling process and provides more refined labels for training the CTC decoder, which can effectively solve the overfitting problem caused by training, while also significantly reducing the training cost in time. We validate the MFO method on the popular CSLR dataset and demonstrate that the model has better performance.
Keywords: Continuous sign language recognition, fully convolutional network, multi-state feature optimization, connectionist temporal classification, adequate training
DOI: 10.3233/JIFS-223601
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 6645-6654, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl