Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Krishna Veni, K.S.; * | Senthil Kumar, N. | Srinivas, R.
Affiliations: Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College, Sivaskasi, Tamilnadu, India
Correspondence: [*] Corresponding author. K.S. Krishna Veni, Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College, Sivaskasi, Tamilnadu, India. E-mail: krishnaveni.ks@mepcoeng.ac.in.
Abstract: In the electrical energy transmission and distribution sector, power transformers play an important role. Early fault diagnosis and prognosis are essential to ensure continuous operation and also to prepare a proper maintenance schedule based on the requirements. The occurrence of a fault in the transformer will lead to the formation of various gases inside the transformer tank. For fault diagnosis in the transformer, Dissolved Gas Analysis (DGA) is an excellent method. An Artificial Intelligence (AI) based fault diagnosis and prognosis system using dissolved gases in transformer oil is helpful to predict the health state of the transformer well in advance. Hence, based on the fault severity level, the remaining useful life of the transformer, fault type and current state of the transformer can be estimated effectively by imparting AI to the existing system. A Two-Tier Fuzzy Logic Controller (TTFLC) is proposed in this article to find the type of fault and health index (HI) of the transformer. For further fault prognosis, an effective Gated Recurrent Network (GRN) based deep learning enabled future learning estimator is used for predicting the Criticality Index (CI) of the Transformer. The performance of the proposed method is evaluated for both data from the IEEE data set and expert data collected from the southern Tamil Nadu region. The proposed system shows better results even in multivariate, complex process systems. The diagnosis accuracy of the proposed system is obtained as 95.28% and it compared with conventional methods such as Rogers Ratio Method (RRM), Duval Triangle Method (DTM) and Duval Pentagon Method (DPM) and other AI based methods such as Radial Basis Neural Network (RBNN), k-nearest neighbors (KNN). The diagnosis accuracy of other conventional and AI based methods are less than 90% for the collected dataset.
Keywords: Transformer, dissolved gas analysis, two tier fuzzy logic controller, fault diagnosis, fault prognosis, gated recurrent network, health index, criticality index
DOI: 10.3233/JIFS-223592
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 6441-6452, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl